Skip to main content

Learning to Execute Navigation Plans

  • Conference paper
  • First Online:
KI 2001: Advances in Artificial Intelligence (KI 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2174))

Included in the following conference series:

  • 423 Accesses

Abstract

Most state-of-the-art navigation systems for autonomous service robots decompose navigation into global navigation planning and local reactive navigation. While the methods for navigation planning and local navigation are well understood, the plan execution problem, the problem of how to generate and parameterize local navigation tasks from a given navigation plan, is largely unsolved. This article describes how a robot can autonomously learn to execute navigation plans. We formalize the problem as a Markov Decision Problem (mdp), discuss how it can be simplified to make its solution feasible, and describe how the robot can acquire the necessary action models. We show, both in simulation and on a RWI B21 mobile robot, that the learned models are able to produce competent navigation behavior.

The research reported in this paper is partly funded by the Deutsche Forschungsgemeinschaft (DFG) under contract number BE 2200/3-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. R.C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  2. M. Beetz and T. Belker. Environment and task adaptation for robotic agents. In Procs. of the 14th European Conference on Artificial Intelligence, 2000.

    Google Scholar 

  3. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Regression Trees. Wadsworth, Inc., Belmont, CA, 1984.

    Google Scholar 

  4. W. Burgard, D. Fox, and S. Thrun. Active mobile robot localization. In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, Nagoya, Japan, 1997.

    Google Scholar 

  5. M. Balac, D.M. Gaines, and D. Fisher. Using regression trees to learn action models. In Proceedings 2000 IEEE Systems, Man and Cybernetics Conference, 2000.

    Google Scholar 

  6. P. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Cambridge, MA, 1995.

    MATH  Google Scholar 

  7. D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine, 4(1), 1997.

    Google Scholar 

  8. D. Kortenkamp, R.P. Bonasso, and R. Murphy, editors. AI-based Mobile Robots: Case studies of successful robot systems. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  9. L. Kaelbling, A. Cassandra, and J. Kurien. Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996.

    Google Scholar 

  10. L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

    Google Scholar 

  12. R.J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, San Mateo, California, 1993.

    Google Scholar 

  13. A. Ram and J. Santamaria. Continous case-based reasoning. Artificial Intelligence, 90(1-2):25–77, 1997.

    Article  MATH  Google Scholar 

  14. Reid Simmons. The curvature-velocity method for local obstacle avoidance. In International Conference on Robotics and Automation, 1996.

    Google Scholar 

  15. R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable environments. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 1995.

    Google Scholar 

  16. R. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps:A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–211, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. Sridharan and G. J. Tesauro. Multi-agent q-learning and regression trees for automated pricing decisions. In Proceedings of the Seventeenth International Conference on Machine Learning, 2000.

    Google Scholar 

  18. P. Stone and M. Veloso. Using decision tree confidence factors for multiagent control. In RoboCup-97: The First Robot World Cup Soccer Games and Conferences. 1998.

    Google Scholar 

  19. S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig, T. Hofmann, M. Krell, and T. Schmidt. Map learning and high-speed navigation in RHINO. In D. Kortenkamp, R.P. Bonasso, and R. Murphy, editors, AI-based Mobile Robots: Case studies of successful robot systems. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  20. S. Thrun. An approach to learning mobile robot navigation. Robotics and Autonomous Systems, 15:301–319, 1996.

    Article  Google Scholar 

  21. X. Wang and T. Dietterich. Efficient value function approximation using regression trees. In Proceedings of the IJCAI-99Workshop on Statistical Machine Learning for Large-Scale Optimization, 1999.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belker, T., Beetz, M. (2001). Learning to Execute Navigation Plans. In: Baader, F., Brewka, G., Eiter, T. (eds) KI 2001: Advances in Artificial Intelligence. KI 2001. Lecture Notes in Computer Science(), vol 2174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45422-5_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45422-5_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42612-7

  • Online ISBN: 978-3-540-45422-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics