Skip to main content

Decoherence Effects of Motion Induced Radiation

  • Conference paper
  • First Online:
Modern Challenges in Quantum Optics

Part of the book series: Lecture Notes in Physics ((LNP,volume 575))

  • 506 Accesses

Abstract

The radiation pressure coupling with vacuum fluctuations gives rise to energy damping and decoherence of an oscillating particle. Both effects result from the emission of pairs of photons, a quantum effect related to the fluctuations of the Casimir force. We discuss different alternative methods for the computation of the decoherence time scale. We take the example of a spherical perfectly-reflecting particle, and consider the zero and high temperature limits. We also present short general reviews on decoherence and dynamical Casimir effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Giulini et al: Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin 1996) H.D. Zeh: Found. Phys. 3, 109 (1973)

    Google Scholar 

  2. W.H. Zurek: Phys. Today 44, No. 10, 36 (1991)

    Article  Google Scholar 

  3. W.H. Zurek: Phys. Rev. D 24, 1516 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  4. W.H. Zurek: Prog. Theor. Phys. 89, 281 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  5. W.G. Unruh and W.H. Zurek: Phys. Rev. D 40, 1071 (1989) B.L. Hu, J.P. Paz and Y. Zhang: Phys. Rev. D 45, 2843 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  6. W.H. Zurek, S. Habib, and J. P. Paz: Phys. Rev. Lett. 70, 1187 (1993)

    Article  ADS  Google Scholar 

  7. W.H. Zurek and J. P. Paz: Phys. Rev. Lett. 82, 5181 (1999)

    Article  ADS  Google Scholar 

  8. D.A.R. Dalvit, J. Dziarmaga and W.H. Zurek, to appear in Phys. Rev. Lett.

    Google Scholar 

  9. M. Brune et al: Phys. Rev. Lett. 77, 4887 (1996) A. Rauschenbeutel et al.: Science 288, 2024 (2000)

    Article  ADS  Google Scholar 

  10. L. Davidovich et al: Phys. Rev. A 53, 1295 (1996)

    Article  ADS  Google Scholar 

  11. C.J. Myatt et al: Nature 403, 269 (2000) C. A. Sackett et al: Nature 404, 256 (2000)

    Article  ADS  Google Scholar 

  12. J. Friedman et al: Nature 406, 43 (2000) C.H. van der Wal et al: Science 290, 773 (2000)

    Article  ADS  Google Scholar 

  13. D.G. Cory et al: Phys. Rev. Lett. 81, 2152 (1998)

    Google Scholar 

  14. D.A.R. Dalvit and P.A. Maia Neto: Phys. Rev. Lett. 84, 798 (2000)

    Article  ADS  Google Scholar 

  15. P.A. Maia Neto and D.A.R. Dalvit: Phys. Rev. A 62, 042103 (2000)

    Article  ADS  Google Scholar 

  16. A.O. Caldeira and A.J. Leggett: Phys. Rev. A 31, 1059 (1985)

    Article  ADS  Google Scholar 

  17. S.K. Lamoreaux: Am. J. Phys. 67, 850(1999) G. Plunien, B. Müller and W. Greiner: Phys. Rep. 134, 87 (1986) V.M. Mostepanenko and N.N. Trunov: The Casimir Effect and its Applications (Clarendon, London, 1997)

    Article  ADS  Google Scholar 

  18. H.B.G. Casimir: Proc. K. Ned. Akad. Wet. 51, 793 (1948)

    MATH  Google Scholar 

  19. S.K. Lamoreaux: Phys. Rev. Lett. 78, 5 (1997) U. Mohideen and A. Roy: Phys. Rev. Lett. 81, 4529 (1998)

    Article  ADS  Google Scholar 

  20. A. Lambrecht and S. Reynaud: Eur. Phys. J. D 8, 309 (2000) C. Genet, A. Lambrecht and S. Reynaud: Phys. Rev. A 62, 012110 (2000) M. Bordag et al: Phys. Rev. Lett. 85, 503 (2000)

    Article  ADS  Google Scholar 

  21. L.S. Brown and G.J. Maclay: Phys. Rev. 184, 1272 (1969)

    Article  ADS  Google Scholar 

  22. G. Barton: J. Phys. A: Math. Gen. 24, 991 (1991) J. Phys. A: Math. Gen. 24, 5533 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Eberlein: J. Phys. A: Math. Gen. 25, 3015 (1992) J. Phys. A: Math. Gen. 25, 3039 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. M.T. Jaekel and S. Reynaud: Quantum Opt. 4, 39 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  25. M.T. Jaekel and S. Reynaud: Phys. Lett. A 172, 319 (1993)

    Article  ADS  Google Scholar 

  26. G. Barton and A. Calogeracos: Ann. Phys. (NY) 238, 227 (1995) A. Calogeracos and G. Barton: Ann. Phys. (NY) 238, 268 (1995)

    Article  ADS  Google Scholar 

  27. M.T. Jaekel and S. Reynaud: Rept. Prog. Phys. 60, 863 (1997)

    Article  ADS  Google Scholar 

  28. M. Kardar and R. Golestanian: Rev. Modern Phys. 71, 1233 (1999)

    Article  ADS  Google Scholar 

  29. H.B. Callen and T.A. Welton: Phys. Rev. 83, 34 (1951) R. Kubo: Rep. Progr. Phys. 29, 255 (1966)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. M.T. Jaekel and S. Reynaud: Quantum Opt. 4, 39 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  31. L.H. Ford and A. Vilenkin: Phys. Rev. D 10, 2569 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  32. G. Barton and C. Eberlein: Ann. Phys. (N.Y.) 227, 222 (1993)

    Article  ADS  Google Scholar 

  33. S.A. Fulling and P. Davies: Proc. R. Soc. London Ser. A 348, 393 (1976)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. P.A. Maia Neto: J. Phys. A: Math. Gen. 27, 2167 (1994)

    Article  ADS  Google Scholar 

  35. L.A.S. Machado and P.A. Maia Neto: Phys. Rev. A 54, 3420(1996)

    Article  ADS  Google Scholar 

  36. G. Barton and C. North: Ann. Phys. (N.Y.) 252, 72 (1996)

    Article  ADS  Google Scholar 

  37. R. Gütig and C. Eberlein: J. Phys. A: Math. Gen. 31, 6819 (1998)

    Article  MATH  ADS  Google Scholar 

  38. D.F. Mundarain and P.A. Maia Neto: Phys. Rev. A 57, 1379 (1998)

    Article  ADS  Google Scholar 

  39. P.A. Maia Neto and S. Reynaud: Phys. Rev. A 47, 1639 (1993)

    Article  ADS  Google Scholar 

  40. G. Barton: ‘New Aspects of the Casimir Effect’. In: Cavity Quantum Electrodynamics, Supplement: Advances in Atomic, Molecular and Optical Physics, ed. by P.R. Berman (Academic Press, New York 1993)

    Google Scholar 

  41. P.A. Maia Neto and L.A.S. Machado: Brazilian J. Phys. 25, 324 (1995)

    Google Scholar 

  42. R. Golestanian and M. Kardar: Phys. Rev. Lett. 78, 3421 (1997) R. Golestanian and M. Kardar: Phys. Rev. A 58, 1713 (1998)

    Article  ADS  Google Scholar 

  43. G.T. Moore: J. Math. Phys. 11, 2679 (1970)

    Article  ADS  Google Scholar 

  44. D.A.R. Dalvit and F.D. Mazzitelli: Phys. Rev. A 57, 2113 (1998) C.K. Cole and W.C. Schieve: Phys. Rev. A 52, 4405 (1995) V.V. Dodonov, A.B. Klimov and D.E. Nikonov: J. Math. Phys. 34, 2742 (1993).

    Article  ADS  Google Scholar 

  45. D.A.R. Dalvit and F.D. Mazzitelli: Phys. Rev. A 59, 3059 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  46. A. Lambrecht, M.T. Jaekel and S. Reynaud: Phys. Rev. Lett. 77, 615 (1996)

    Article  ADS  Google Scholar 

  47. V.V. Dodonov and A.B. Klimov: Phys. Rev. A 53, 2664 (1996)

    Article  ADS  Google Scholar 

  48. M. Crocce, D.A.R. Dalvit and F.D. Mazzitelli: xxx archives quant-ph/0012040 (2000)

    Google Scholar 

  49. C. Eberlein: Phys. Rev. A 53, 2772 (1996) Phys. Rev. Lett. 76, 3842 (1996)

    Article  ADS  Google Scholar 

  50. M.T. Jaekel and S. Reynaud: J. Phys. France I 3, 1 (1993)

    Article  ADS  Google Scholar 

  51. D.F. Walls and G.J. Milburn: Phys. Rev. A 31, 2403 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  52. M.T. Jaekel and S. Reynaud: Phys. Lett. A 167, 227 (1992) A. Lambrecht, M.T. Jaekel and S. Reynaud: Phys. Lett. A 225, 188 (1997)

    Article  ADS  Google Scholar 

  53. M.T. Jaekel and S. Reynaud: J. Phys. France I 2, 149 (1992)

    Article  ADS  Google Scholar 

  54. E. Joos and H.D. Zeh: Z. Phys. B 59, 223 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maia Neto, P.A., Dalvit, D. (2001). Decoherence Effects of Motion Induced Radiation. In: Orszag, M., Retamal, J.C. (eds) Modern Challenges in Quantum Optics. Lecture Notes in Physics, vol 575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45409-8_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45409-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41957-0

  • Online ISBN: 978-3-540-45409-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics