Skip to main content

Atomic Coherence Effects in Doppler-Broadened Three-Level Systems with Standing-Wave Drive

  • Conference paper
  • First Online:
Modern Challenges in Quantum Optics

Part of the book series: Lecture Notes in Physics ((LNP,volume 575))

  • 515 Accesses

Abstract

We study atomic coherence effects (e.g., electromagnetically induced transparency, EIT, and amplification without inversion, AWI) for a probe travelling-wave (TW) laser field in closed Doppler-broadened three-level systems driven by a standingwave (SW) laser field of moderate intensity (its Rabi frequencies are smaller than the Doppler width of the driven transition). We show that probe windows of transparency occur only for values of the probe to drive field frequency ratio R close to half integer values. For optical transitions and typical values of Doppler broadening for atoms in a vapor cell, we show that for R > 1 a SW drive field is appreciably more efficient than a TW drive in inducing probe transparency. We show that folded (cascade) schemes driven by a sufficiently detuned SW field can exhibit AWI for odd (even) values of R. Results for AWI with frequency up-conversion ratios R = 3 and 4 are presented and compared to those obtained with a TW drive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. O. Scully and M. S. Zubairy, Quantum Optics, (Cambridge Univ. Press., 1997) Chap. 7, pp. 220–245.

    Google Scholar 

  2. E. Arimondo, Coherent population trapping in laser spectroscopy, in Progress in Optics XXXV, Ed. E. Wolf (Elsevier, Amsterdam 1996) Chap. V, pp. 258–354.

    Google Scholar 

  3. S. E. Harris, Electromagnetically Induced Transparency, Phys. Today 50 (7), 36 (1997).

    Article  Google Scholar 

  4. J. Mompart and R. Corbalán, Lasing without inversion, J. Opt. B: Quantum Semiclass. Opt. 2, R7–R24 (2000).

    Article  ADS  Google Scholar 

  5. M.O. Scully et al. Phys. Rev. Lett. 67, 1855 (1991); A.S. Zibrov et al. Phys. Rev. Lett. 76, 3935 (1996).

    Article  ADS  Google Scholar 

  6. L.V. Hau et al. Nature, 397, 594 (1999); M.M. Kash et al. Phys. Rev. Lett. 82, 5229 (1999).

    Article  ADS  Google Scholar 

  7. L.J. Wang et al. Nature, 406, 277 (2000).

    Article  ADS  Google Scholar 

  8. K. Hakuta et al. Phys. Rev. Lett. 66, 596 (1991); G. Z. Zhang et al. Phys. Rev. Lett. 71, 309 (1993); Y. Li and M. Xiao, Opt. Lett. 21, 1064 (1996).

    Article  ADS  Google Scholar 

  9. G. Alzetta et al. Lett. Nuovo Cimento 17, 333 (1976).

    Article  ADS  Google Scholar 

  10. H. R. Gray et al. Opt. Lett. 3, 218 (1978).

    Article  ADS  Google Scholar 

  11. K.-J. Boller et al. Phys. Rev. Lett. 66, 2593 (1991); J. E. Field et al. Phys. Rev. Lett. 67, 3062 (1991).

    Article  ADS  Google Scholar 

  12. K. Hakuta et al. Phys. Rev. Lett. 66, 596 (1991).

    Article  ADS  Google Scholar 

  13. M. Xiao et al. Phys. Rev. Lett. 74, 666 (1995).

    Article  ADS  Google Scholar 

  14. J. R. Boon et al. Phys. Rev. A 57, 1323 (1998).

    Article  ADS  Google Scholar 

  15. A. Nottelmann et al. Phys. Rev. Lett. 70, 1783 (1993); E. S. Fry et al. Phys. Rev. Lett. 70, 3235 (1993); W. E. van der Veer et al. Phys. Rev. Lett. 70, 3242 (1993). Y. Zhu and J. Lin, Phys. Rev. A, 53, 1767 (1996); Y. Zhu et al. Optics Comm. 128, 254 (1996); J. A. Kleinfeld, and A. D. Streater, Phys. Rev. A 53, 1836 (1996); P. B. Sellin et al. Phys. Rev. A 54, 2402 (1996); C. Fort et al. Optics Comm. 139, 31 (1997); J. Kitching and L. Hollberg, Phys. Rev. A 59, 4685 (1999).

    Article  ADS  Google Scholar 

  16. A. S. Zibrov et al. Phys. Rev. Lett. 75, 1499 (1995); G. G. Padmabandu et al. Phys. Rev. Lett. 76, 2053 (1996); F. B. de Jong et al. Phys. Rev. A 57, 4869 (1998).

    Article  ADS  Google Scholar 

  17. M. D. Lukin et al. Laser Physics 6, 436 (1996). S. F. Yelin et al. Phys. Rev. A 57, 3858 (1998); J. Mompart et al. Opt. Commun. 147, 299 (1998); J. R. Boon et al. Phys. Rev. A 58, 2560 (1998); V. Ahufinger et al. Phys. Rev. A 60, 614 (1999); V. Ahu.nger et al. Phys. Rev. A 61, 053814 (2000).

    Google Scholar 

  18. F. Silva et al. Europhys. Lett. 51, 286 (2000).

    Article  ADS  Google Scholar 

  19. F. Silva et al. Laser Phys. 9, 858 (1999).

    Google Scholar 

  20. F. Silva et al. Opt. Commun. 114, 519 (1995).

    Article  ADS  Google Scholar 

  21. R. Corbalán et al. Opt. Commun. 133, 225 (1997).

    Article  ADS  Google Scholar 

  22. See, e.g., S. Stenholm and W. E. Lamb, Jr., Phys. Rev. 181, 618 (1969).

    Article  ADS  Google Scholar 

  23. B. J. Feldman and M. S. Feld, Phys. Rev. A 1, 1375 (1970).

    Article  ADS  Google Scholar 

  24. See, e.g., B. J. Feldman and M. S. Feld, Phys. Rev. A 5, 899 (1972).

    Article  ADS  Google Scholar 

  25. R. Vilaseca et al. Appl. Phys. B 34, 73 (1984).

    Article  ADS  Google Scholar 

  26. C. Cohen-Tannoudji et al. Atom-Photon Interactions (John Wiley & Sons, 1992).

    Google Scholar 

  27. L. Roso et al., Appl. Phys. B 31, 115 (1983).

    Article  ADS  Google Scholar 

  28. J. Mompart, and R. Corbalán, Optics Comm. 156, 133 (1998).

    Article  ADS  Google Scholar 

  29. P. B. Sellin et al. Phys. Rev. A 54, 2402 (1996).

    Article  ADS  Google Scholar 

  30. J. Mompart et al. Opt. Commun. 147, 299 (1998)

    Article  ADS  Google Scholar 

  31. J. Mompart and R. Corbalán, in ”3rd Iberoamerican Optics Meeting”, Ed. A. M. Guzmán, SPIE, Vol. 3572, 33 (1999)

    Google Scholar 

  32. J. Mompart et al. Laser Phys. 9, 844 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silva, F., Mompart, J., Ahufinger, V., Corbalán, R. (2001). Atomic Coherence Effects in Doppler-Broadened Three-Level Systems with Standing-Wave Drive. In: Orszag, M., Retamal, J.C. (eds) Modern Challenges in Quantum Optics. Lecture Notes in Physics, vol 575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45409-8_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-45409-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41957-0

  • Online ISBN: 978-3-540-45409-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics