Skip to main content

Light-induced reduction of heavy-metal ions on titanium dioxide dispersions

  • Conference paper
  • First Online:
Book cover Adsorption and Nanostructure

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 117))

Abstract

Photoactive semiconductors such as TiO2 can be applied for wastewater treatment; not only for degradation of organic pollutants, but also for removal of heavy-metal ions. Photoassisted reduction of different, mostly toxic metal ions, such as Hg(II), Pb(II), Bi(III), and Cu(II), has been realized in aqueous systems containing ethanol as a sacrificial electron donor. The efficiency of the photoreduction carried out under the same circumstances is primarily determined by the standard reduction potential of the species containing the metal ion to be removed as demonstrated by the examples of Hg(II), Bi(III), and Pb(II). The relatively lower efficiency for the deposition of Cu may be attributed to a short-circuiting effect. Surfactants of different type also function as potential electron donors in these systems. Negatively charged dodecyl sulfate proved to be much more efficient than ethanol, while cationic cetyltrimethylammonium is rather weak in this respect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fox MA (1983) Acc Chem Res 16:314

    Article  CAS  Google Scholar 

  2. Hsiao C, Lee C, Ollis DF (1983) J Catal 82:418

    Article  CAS  Google Scholar 

  3. Ahmed S, Ollis DF (1984) Sol Energy 32:597

    Article  CAS  Google Scholar 

  4. Okamoto K, Yamamoto Y, Tanaka H, Tanaka M (1985) Bull Chem Soc Jpn 58:2015

    Article  CAS  Google Scholar 

  5. Ollis DF (1985) Environ Sci Technol 19:480

    Article  CAS  Google Scholar 

  6. Matthews RW (1986) Water Res 20:569

    Article  CAS  Google Scholar 

  7. Matthews RW (1988) J Catal 111:264

    Article  CAS  Google Scholar 

  8. Terzian R, Serpone N, Minero C, Pelizetti E (1991) J Catal 128:352

    Article  CAS  Google Scholar 

  9. Heller A, Brock JR (1994) In: Helz GR, Zepp RG, Crosby DG (eds) Aquatic surface photochemistry. Lewia, Boca Raton, pp 427–436

    Google Scholar 

  10. Lea J, Adesina AA (1998) J Photochem Photobiol A 118:111

    Article  CAS  Google Scholar 

  11. Curran JS, Domenech J, Jaffrezic-Renault N, Philippe R (1985) J Phys Chem 89:957

    Article  CAS  Google Scholar 

  12. Borgarello E, Serpone N, Emo G, Harris R, Pelizetti E (1986) Inorg Chem 25:4499

    Article  CAS  Google Scholar 

  13. Domenech J, Munoz J (1987) Electrochim Acta 32:1383

    Article  CAS  Google Scholar 

  14. Herrmann J-M, Disdier J, Pichat P (1988) J Catal 113:72

    Article  CAS  Google Scholar 

  15. Herrmann J-M, Guillard C, Pichat P (1993) Catal Today 17:7

    Article  CAS  Google Scholar 

  16. Serpone N, Ah-You YK, Tran TP, Harris R, Pelizetti E, Hidaka H (1987) Sol Energy 139:491

    Article  Google Scholar 

  17. Prairie MR, Evans LR, Stange BM, Martinez SL (1993) Environ Sci Technol 27:1176

    Article  Google Scholar 

  18. Tennakone K, Wijayantha KGU (1997) J Photochem Photobiol A 113:89

    Article  Google Scholar 

  19. Latimer WL (1952) Oxidation potentials, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  20. Rajeshwar K, Ibanez JG (1995) J Chem Educ 72:1044

    Article  Google Scholar 

  21. Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon, Oxford, pp 736, 1409

    Google Scholar 

  22. Bard AJ (ed) (1982) Encyclopedia of electrochemistry of the elements, vol 9, 4th edn. Dekker, New York

    Google Scholar 

  23. Shriver DF, Atkins PW, Langford CH (1992) Anorganische Chemie. VCH, Weinheim, pp 707–722

    Google Scholar 

  24. Tanaka K, Harada K, Murata S (1986) Sol Energy 36:159

    Article  CAS  Google Scholar 

  25. Kroschwitz JI, Howe-Grant M (eds) (1994) Kirk-Othmer Encyclopedia of chemical technology, vols 7–8, 4th edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Imre Dékány

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag

About this paper

Cite this paper

Horváth, O., Hegyi, J. (2001). Light-induced reduction of heavy-metal ions on titanium dioxide dispersions. In: Dékány, I. (eds) Adsorption and Nanostructure. Progress in Colloid and Polymer Science, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45405-5_38

Download citation

  • DOI: https://doi.org/10.1007/3-540-45405-5_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41946-4

  • Online ISBN: 978-3-540-45405-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics