Skip to main content

Adsorption from aqueous phenol and 2,3,4-trichlorophenol solutions on nanoporous carbon prepared from poly(ethylene terephthalate)

  • Conference paper
  • First Online:
Book cover Adsorption and Nanostructure

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 117))

Abstract

Highly microporous poly(ethylene terephthalate) based activated carbon exhibits a Brunauer—Emmett—Teller surface area of 1170 m2/g and a total pore volume of 0.625 cm3/g. It contains mesopores in a sufficient proportion of 42% of the total pore volume, which promotes the diffusion availability of the micropore region. The surface possesses an amphoteric nature owing to the oxygen functionalities present; however, the majority of the groups are basic. The adsorption properties from aqueous solution of weak acids, such as phenol and 2,3,4-trichlorophenol, depend both on the pH of the solutions and on the pK a of the phenols, as the pH influences both the surface chemistry of the carbon and the dissociation of the weak acids used. In the case of phenol, a competitive adsorption takes place, as the interactions are weak in the three media investigated (pH 3, unbuffered and pH 11). The triple chlorine substitution in 2,3,4-trichlorophenol significantly enhances the surface interactions. Owing to the smaller pK a value of trichlorophenol in an unbuffered medium, ionic interaction occurs as has been concluded from the outstandingly high value of the adsorption equilibrium constant. At pH 11 the adsorption of the phenols is hindered by electrostatic repulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bansal RC, Donnet JB, Stoeckli HF (1988) Active carbon. Dekker, New York

    Google Scholar 

  2. Puri BR (1970) In: Walker PL Jr (ed) Chemistry and physics of carbon, vol 6. Dekker, New York, pp 191–282

    Google Scholar 

  3. Boehm HP (1994) Carbon 32:759

    Article  CAS  Google Scholar 

  4. Leon y Leon CA, Radovic LR (1994) In: Thrower PA (ed) Chemistry and physics of carbon, vol 24. Dekker, New York, pp 214–310

    Google Scholar 

  5. Benaddi H, Bandosz TJ, Jagiello J, Schwarz JA, Rouzaud JN, Legras D, Béguin F (2000) Carbon 38:669

    Article  CAS  Google Scholar 

  6. Rodrígez-Reinoso F (1998) Carbon 36:159

    Article  Google Scholar 

  7. Boehm HP, Diehl E, Heck WR Sappok (1964) Angew Chem Int Ed Engl 3:669

    Article  Google Scholar 

  8. Zielke U, Hüttinger KJ, Hoffman WP (1996) Carbon 34:983

    Article  CAS  Google Scholar 

  9. Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) Carbon 37:1215

    Article  CAS  Google Scholar 

  10. Boehm HP, Voll M (1970) Carbon 8:227

    Article  CAS  Google Scholar 

  11. Papirer E, Li S, Donnet JB (1987) Carbon 25:243

    Article  CAS  Google Scholar 

  12. Papirer E, Dentzer J, Li S, Donnet JB (1991) Carbon 29:69

    Article  CAS  Google Scholar 

  13. Bismarck A, Wuertz C, Springer J (1999) Carbon 37:1019

    Article  CAS  Google Scholar 

  14. Suárez D, Menéndez JA, Fuente E, Montes-Morán MA (1999) Langmuir 15:3897

    Article  Google Scholar 

  15. Salvador F, Merchán MD (1996) Carbon 34:1543

    Article  CAS  Google Scholar 

  16. Nevskaia DM, Santianes A, Muñoz V, Guerrero-Ruiz A (1999) Carbon 37:1065

    Article  CAS  Google Scholar 

  17. Tessmer CH, Vidic RD, Uranowski LJ (1997) Environ Sci Technol 31:1872

    Article  CAS  Google Scholar 

  18. Brasquet C, Le Cloirec P (1997) Carbon 35:1307

    Article  CAS  Google Scholar 

  19. Singh B, Madhusudhanan S, Dubey V, Nath R, Rao NBSN (1996) Carbon 34:327

    Article  CAS  Google Scholar 

  20. Caturla F, Martín-Martínez JM, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R (1988) J Colloid Interface Sci 124:528

    Article  CAS  Google Scholar 

  21. Honig P (1926) Kolloid Chem Beih 22:345

    Article  CAS  Google Scholar 

  22. Puri BR (1966) Carbon 4:39

    Article  Google Scholar 

  23. László K, Bóta A, Nagy LG (2000) Carbon 38:1965

    Article  Google Scholar 

  24. Unger K, Schadow E, Fischer H (1976) Z Phys Chem 99:245

    CAS  Google Scholar 

  25. Halsey GD (1948) J Chem Phys 16:931

    Article  CAS  Google Scholar 

  26. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  27. Schay G, Nagy LG (1978) Adsorption from binary mixtures on S/L and S/G interfaces. Akadémiai, Budapest, p 106 (in Hungarian)

    Google Scholar 

  28. Tamon H, Okazaki M (1996) Carbon 34:741

    Article  CAS  Google Scholar 

  29. Otowa T, Nojima Y, Miyazaki T (1997) Carbon 35:1315

    Article  CAS  Google Scholar 

  30. Szucs A (1999) MSc thesis. Budapest University of Technology and Economics, Budapest, Hungary

    Google Scholar 

  31. Bta A, László K, Nagy LG, Subklew G, Schlimper H, Schwuger MJ (1996) Adsorption 2:81

    Google Scholar 

  32. Schay G, Nagy LG (1961) J Chim Phys 149

    Google Scholar 

  33. Gasser G, Kipling JJ (1960) Proceedings of the Fourth Conference on Carbon. Pergamon, New York, p55

    Google Scholar 

  34. Oberlin A (1989) In: Thrower PA (ed) Chemistry and physics of carbon, vol 22. Dekker, New York, pp 1–143

    Google Scholar 

  35. Kinoshita K (1988) Carbon. Electrochemical and physicochemical properties. Wiley, New York, p 144

    Google Scholar 

  36. Urano K, Kano H (1984) Bull Chem Soc Jpn 57:2501

    Google Scholar 

  37. Warch E (1983) Z Chem 23:427

    Article  Google Scholar 

  38. Radovic LR, Ume JI, Scaroni W (1996) In: LeVan MD (ed) Fundamentals of adsorption. Kluwer, Boston, p 749

    Google Scholar 

  39. Radovic LR, Silva IF, Ume JI, Menendez JA, Leon y Leon CA, Scaroni W (1997) Carbon 35:1339

    Article  CAS  Google Scholar 

  40. Ume JI, Scaroni W, Radovic LR (1993) Proceedings of the 21st Biennial Conference on Carbon, Buffalo. American Carbon Society, New York, p468

    Google Scholar 

  41. Snyder LR (1968) Principles of adsorption chromatography. Dekker, New York, p 199

    Google Scholar 

  42. Haghseresht F, Lu GQ, Whittaker AK (1999) Carbon 37:1491

    Article  CAS  Google Scholar 

  43. McClellan AL, Harnsberger HFJ (1967) J Colloid Sci 23:577

    Article  CAS  Google Scholar 

  44. Biniak S, Szymanski G, Siedlewski J, Swiatkowski A (1997) Carbon 35:1799

    Article  CAS  Google Scholar 

  45. Radovic LR (1999) In: Schwarz JA, Contescu CI (eds) Surfaces of nano-particles and porous materials. Dekker, New York, pp 529–565

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Imre Dékány

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag

About this paper

Cite this paper

László, K. (2001). Adsorption from aqueous phenol and 2,3,4-trichlorophenol solutions on nanoporous carbon prepared from poly(ethylene terephthalate). In: Dékány, I. (eds) Adsorption and Nanostructure. Progress in Colloid and Polymer Science, vol 117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45405-5_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45405-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41946-4

  • Online ISBN: 978-3-540-45405-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics