Skip to main content

Nonlinear Shape Statistics via Kernel Spaces

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2191))

Abstract

We present a novel approach for representing shape knowledge in terms of example views of 3D objects. Typically, such data sets exhibit a highly nonlinear structure with distinct clusters in the shape vector space, preventing the usual encoding by linear principal component analysis (PCA). For this reason, we propose a nonlinear Mercerkernel PCA scheme which takes into account both the projection distance and the within-subspace distance in a high-dimensional feature space. The comparison of our approach with supervised mixture models indicates that the statistics of example views of distinct 3D objects can fairly well be learned and represented in a completely unsupervised way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, Proc. of the 5th Annual ACM Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, PA, 1992. ACM Press.

    Chapter  Google Scholar 

  2. B. Chalmond and S. C. Girard. Nonlinear modeling of scattered multivariate data and its application to shape change. IEEE Trans. Patt. Anal. Mach. Intell., 21(5):422–432, 1999.

    Article  Google Scholar 

  3. T.F. Cootes and C.J. Taylor. A mixture model for representing shape variation. Image and Vis. Comp., 17(8):567–574, 1999.

    Article  Google Scholar 

  4. T.F. Cootes, C.J. Taylor, D.M. Cooper, and J. Graham. Active shape models-their training and application. Comp. Vision Image Underst., 61(1):38–59, 1995.

    Article  Google Scholar 

  5. V. Cortes, and C. Vapnik. Support vector networks. Machine Learning, 20: 273–297, 1995.

    MATH  Google Scholar 

  6. D. Cremers, C. Schnörr, and J. Weickert. Diffusion-snakes: Combining statistical shape knowledge and image information in a variational framework. In IEEE Workshop on Variational and Level Set Methods, Vancouver, Canada, Jul. 13, 2001. To appear.

    Google Scholar 

  7. D. Cremers, C. Schnörr, J. Weickert, and C. Schellewald. Diffusion-snakes using statistical shape knowledge. In G. Sommer and Y.Y. Zeevi, editors, Algebraic Frames for the Perception-Action Cycle, volume 1888 of Lect. Not. Comp. Sci., pages 164–174, Kiel, Germany, Sept. 10-11, 2000. Springer.

    Chapter  Google Scholar 

  8. T. Heap and D. Hogg. Automated pivot location for the cartesian-polar hybrid point distribution model. In Brit. Machine Vision Conference, pages 97–106, Edinburgh, UK,Sept. 1996.

    Google Scholar 

  9. C. Kervrann and F. Heitz. A hierarchical markov modeling approach for the segmentation and tracking of deformable shapes. Graphical Models and Image Processing, 60:173–195, 5 1998.

    Article  Google Scholar 

  10. M.E. Leventon, W.E.L. Grimson, and O. Faugeras. Statistical shape influence in geodesic active contours. In Proc. Conf. Computer Vis. and Pattern Recog., volume 1, pages 316–323, Hilton Head Island, South Carolina, June 13-15, 2000.

    Google Scholar 

  11. B. Moghaddam and A. Pentland. Probabilistic visual learning for object representation. IEEE Trans. Patt. Anal. Mach. Intell., 19(7):696–710, 1997.

    Article  Google Scholar 

  12. B. Schölkopf, S. Mika, Smola A., G. Rätsch, and Müller K.-R. Kernel PCA pattern reconstruction via approximate pre-images. In L. Niklasson, M. Boden, and T. Ziemke, editors, Internat. Conf. on Art. Neural Networks ICANN, pages 147–152, Berlin, Germany, 1998. Springer.

    Google Scholar 

  13. B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cremers, D., Kohlberger, T., Schnörr, C. (2001). Nonlinear Shape Statistics via Kernel Spaces. In: Radig, B., Florczyk, S. (eds) Pattern Recognition. DAGM 2001. Lecture Notes in Computer Science, vol 2191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45404-7_36

Download citation

  • DOI: https://doi.org/10.1007/3-540-45404-7_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42596-0

  • Online ISBN: 978-3-540-45404-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics