Skip to main content

Theory and Control of Multiple Hopping in Activated Surface Diffusion

  • Conference paper
  • First Online:
Stochastic Processes in Physics, Chemistry, and Biology

Part of the book series: Lecture Notes in Physics ((LNP,volume 557))

Abstract

The theory of activated diffusion is reviewed. Results are presented for the one dimensional model of a particle moving on a periodic lattice coupled to a dissipative bath. Special attention is paid to the exponential hopping limit, which is of interest in experimental studies of metal atom diffusion on metals. Quantum effects, such as the suppression of diffusion through tunneling and above barrier reflection are discussed. New results are presented for the quantum theory in the exponential hopping limit. The control of diffusion via external fields is discussed as well as other open questions which remain unsolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.C. Senft and G. Ehrlich, Phys. Rev. Lett. (1995) 74, 294.

    Article  ADS  Google Scholar 

  2. Linderoth T.R., Horch S., Laegsgaard E., Stensgaard I., Besenbacher F., Phys. Rev. Lett. (1997) 78, 4978.

    Article  ADS  Google Scholar 

  3. Turlo E., Esteve D., Urbina C, Martinis J.M., Devoret M.H., Linkwitz S. and Grabert H., Phys. Rev. Lett. (1989) 62, 1788.

    Article  ADS  Google Scholar 

  4. Lauhon J.L., Ho W., J. Chem. Phys. (1999) 111, 5633.

    Article  ADS  Google Scholar 

  5. Talkner P., Hershkovitz E., Pollak E. and Hänggi P., Surf. Sci. (1999) 437, 198.

    Article  ADS  Google Scholar 

  6. Mel'nikov V.I., Meshkov S.V., J. Chem. Phys. (1986) 85, 1018.

    Article  ADS  Google Scholar 

  7. Mel'nikov V.I., Phys. Rep. (1991) 209, 1.

    Article  ADS  Google Scholar 

  8. Hershkovitz E., Talkner P., Pollak E. and Georgievskii Y., Surf. Sci. (1999) 421, 73.

    Article  ADS  Google Scholar 

  9. Georgievskii Y., Pollak E., Phys. Rev. E (1994) 49, 5098.

    Article  ADS  Google Scholar 

  10. Èhrlich G., J. Chem. Phys. (1966) 44, 1050.

    Article  ADS  Google Scholar 

  11. Wang S.C., Wrigley D.J. and Ehrlich G., J. Chem. Phys. (1989) 91, 5087.

    Article  ADS  Google Scholar 

  12. Wrigley J.D., Twigg M.E. and Ehrlich G., J. Chem. Phys. 93, 2885 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  13. Georgievskii Y., Kozhushner M.A. and Pollak E., J. Chem. Phys. (1995) 102, 6908.

    Article  ADS  Google Scholar 

  14. Georgievskii Y. and Pollak E., Surf. Sci. (1996) 355, L366.

    Article  Google Scholar 

  15. Kramers H.A., Physica (1940) 7, 284.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Jacobsen J., Jacobsen K.W., Sethna J.P., Phys. Rev. Lett. (1997) 79, 2843.

    Article  ADS  Google Scholar 

  17. Bader J.S., Berne B.J. and Pollak E., J. Chem. Phys. (1995) 102, 4037.

    Article  ADS  Google Scholar 

  18. Chen L.Y., Baldan M.R.and Ying S.C., Phys. Rev. B (1996) 54, 8856.

    Article  ADS  Google Scholar 

  19. Caratti G., Ferrando R., Spadacini R. and Tommei G.E., Phys. Rev. E (1996) 54, 4708.

    Article  ADS  Google Scholar 

  20. Caratti G., Ferrando R., Spadacini R. and Tommei G.E., Chem. Phys. (1998) 235, 157.

    Article  Google Scholar 

  21. Lovisa M. and Ehrlich G, J. Phys. (Paris) (1989) C8, 50.

    Google Scholar 

  22. Kallunki J, Dube M. and Ala-Nissila T., (1999), J. Phys. C, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pollak, E. (2000). Theory and Control of Multiple Hopping in Activated Surface Diffusion. In: Freund, J.A., Pöschel, T. (eds) Stochastic Processes in Physics, Chemistry, and Biology. Lecture Notes in Physics, vol 557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45396-2_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45396-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41074-4

  • Online ISBN: 978-3-540-45396-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics