Skip to main content

Nonlinear Spatiotemporal Patterns in Globally Coupled Reaction-Diffusion Systems

  • Conference paper
  • First Online:
Stochastic Processes in Physics, Chemistry, and Biology

Part of the book series: Lecture Notes in Physics ((LNP,volume 557))

Abstract

Global couplings strongly affect structure formation in spatially extended nonlinear dynamic systems. We review the role of such global constraints on spatiotemporal patterns in reaction-diffusion systems of activator-inhibitor type. Important applications pertain to current filaments and fronts in semiconductors where global couplings are naturally introduced by the resistive circuit environment in which semiconductor devices are generally operated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. S. Mikhailov, Foundations of Synergetics Vol. I,2 ed. (Springer, Berlin, 1994).

    MATH  Google Scholar 

  2. F. H. Busse and S. C. Muller, Evolution of spontaneous structures in dissipative continuous systems (Springer, Berlin, 1998).

    MATH  Google Scholar 

  3. E. Scholl, Nonequilibrium Phase Transitions in Semiconductors (Springer, Berlin, 1987).

    Google Scholar 

  4. E. Scholl, Nonlinear spatio-temporal dynamics and chaos in semiconductors (Cambridge University Press, Cambridge, 2000), in print.

    Google Scholar 

  5. M. P. Shaw, V. V. Mitin, E. Scholl, and H. L. Grubin, The Physics of Instabilities in Solid State Electron Devices (Plenum Press, New York, 1992).

    Google Scholar 

  6. J. Peinke, J. Parisi, O. Rossler, and R. Stoop, Encounter with Chaos (Springer, Berlin, Heidelberg, 1992).

    Google Scholar 

  7. B. S. Kerner and V. V. Osipov, Autosolitons (Kluwer Academic Publishers, Dordrecht, 1994).

    Google Scholar 

  8. E. Scholl, F.-J. Niedernostheide, J. Parisi, W. Prettl, and H. Purwins, in Evolution of spontaneous structures in dissipative continuous systems, edited by F. H. Busse and S. C. Miiller (Springer, Berlin, 1998), pp. 446–494.

    Chapter  Google Scholar 

  9. K. Aoki, Nonlinear dynamics and chaos in semiconductors (Institute of Physics Publishing, Bristol, 2000).

    Book  Google Scholar 

  10. Theory of Transport Properties of Semiconductor Nanostructures, Vol. 4 of Electronic Materials Series, edited by E. Scholl (Chapman and Hall, London, 1998).

    Google Scholar 

  11. L. Schimansky-Geier, C. Ziilicke, and E. Scholl, Z. Phys. B 84, 433 (1991).

    Article  ADS  Google Scholar 

  12. L. Schimansky-Geier, C. Zulicke, and E. Scholl, Physica A 188, 436 (1992).

    Article  ADS  Google Scholar 

  13. A. F. Volkov and S. M. Kogan, Sov. Phys. Usp. 11, 881 (1969).

    Article  ADS  Google Scholar 

  14. F. G. Bass, V. S. Bochkov, and Y. G. Gurevich, Soviet Physics JETP 31, 972 (1970), [Zh. Eksp. Teor. Fiz. 58, 1814 (1970)].

    ADS  Google Scholar 

  15. A. Alekseev, S. Bose, P. Rodin, and E. Scholl, Phys. Rev. E 57, 2640 (1998).

    Article  ADS  Google Scholar 

  16. E. Scholl and D. Drasdo, Z. Phys. B 81, 183 (1990).

    Article  ADS  Google Scholar 

  17. R. E. Kunz and E. Scholl, Z. Phys. B 89, 289 (1992).

    Article  ADS  Google Scholar 

  18. A. Wacker and E. Scholl, Z. Phys. B 93, 431 (1994).

    Article  ADS  Google Scholar 

  19. F.-J. Niedernostheide, H. Schulze, S. Bose, A. Wacker, and E. Scholl, Phys. Rev. E 54, 1253 (1996).

    Article  ADS  Google Scholar 

  20. F. Schlogl, Z. Phys. 253, 147 (1972).

    Article  ADS  Google Scholar 

  21. G. Schwarz, C. Lehmann, and E. Scholl, Phys. Rev. B 61, 10194 (2000).

    Article  ADS  Google Scholar 

  22. J. Hirschinger, W. Eberle, W. Prettl, F.-J. Niedernostheide, and H. Kostial, Phys. Lett. A 236, 249 (1997).

    Article  ADS  Google Scholar 

  23. M. Meixner, P. Rodin, E. Scholl, and A. Wacker, Eur. Phys. J. B 13, 157 (2000).

    ADS  Google Scholar 

  24. M. Meixner, P. Rodin, and E. Scholl, Phys. Rev. E 58, 2796 (1998).

    Article  ADS  Google Scholar 

  25. M. Meixner, P. Rodin, and E. Scholl, Phys. Rev. E 58, 5586 (1998).

    Article  ADS  Google Scholar 

  26. Y. Zel’dovich and D. Frank-Kamenetskij, Zh. Eksp. Khim. 12, 100 (1938).

    Google Scholar 

  27. J. B. Gunn, IBM J. Res. Develop. 8, 141 (1964).

    Article  Google Scholar 

  28. L. B. Loeb, Science 148, 1417 (1965).

    Google Scholar 

  29. V. L. Bonch-Bruevich, I. P. Zvyagin, and A. G. Mironov, Domain electrical instabilities in semiconductors (Consultant Bureau, New York, 1975).

    Google Scholar 

  30. P. Pelce, Dynamics of Curved Fronts (Academic Press, San Diego, 1988).

    MATH  Google Scholar 

  31. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer-Verlag, Berlin, 1988).

    Google Scholar 

  32. Y. M. Svirezhev, Nonlinear Waves, Dissipative Structures and Catastrophes in Ecology (Nauka, Moscow, 1987), (in Russian).

    MATH  Google Scholar 

  33. V. V. Osipov and V. A. Kholodnov, Microelectronica 2, 529 (73), (in Russian).

    Google Scholar 

  34. F.-J. Niedernostheide, M. Ardes, M. Or-Guil, and H.-G. Purwins, Phys. Rev. B 49, 7370 (1994).

    Google Scholar 

  35. A. V. Gorbatyuk and P. B. Rodin, Sol. State El. 35, 1359 (1992).

    Article  ADS  Google Scholar 

  36. B. Glavin, V. Kochelap, and V. Mitin, Phys. Rev. B 56, 13346 (1997).

    Google Scholar 

  37. D. Mel’nikov and A. Podlivaev, Semicond. 32, 206 (1998).

    Article  ADS  Google Scholar 

  38. A. D. Martin, M. L. F. Lerch, P. E. Simmonds, and L. Eaves, Appl. Phys. Lett. 64, 1248 (1994).

    Article  ADS  Google Scholar 

  39. H. Hempel, I. Schebesch, and L. Schimansky-Geier, Eur. Phys. J. B 2,399 (1998).

    Article  ADS  Google Scholar 

  40. G. Schwarz, C. Lehmann, A. Reimann, E. Scholl, J. Hirschinger, W. Prettl, and V. Novak, Semicond. Sci. Technol. (2000), (in print).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schöll, E. (2000). Nonlinear Spatiotemporal Patterns in Globally Coupled Reaction-Diffusion Systems. In: Freund, J.A., Pöschel, T. (eds) Stochastic Processes in Physics, Chemistry, and Biology. Lecture Notes in Physics, vol 557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45396-2_39

Download citation

  • DOI: https://doi.org/10.1007/3-540-45396-2_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41074-4

  • Online ISBN: 978-3-540-45396-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics