Skip to main content

Active Motion of Brownian Particles

  • Conference paper
  • First Online:
Stochastic Processes in Physics, Chemistry, and Biology

Part of the book series: Lecture Notes in Physics ((LNP,volume 557))

Abstract

We investigate the dynamics of Brownian particles which are active in the sense that they take up energy from the environment, which can be stored in a internal energy depot and used for different activities. As one example, we consider the generation of a self-consistent field, which in turn affects the movement of the particles. The dynamics can in this case be described by coupled reactiondiffusion equations, but will be more efficiently simulated by means of Langevin equations for the active particles. As another example, we discuss the active motion of Brownian particles which can be described by a non-linear, velocity-dependent friction function. Provided a supercritical supply of energy, the active particles are able to perform non-trivial motion, such as “uphill” motion against the direction of an external force, or motion on a stochastic limit cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albano, E. V. 1996: Self-organized collective displacements of self-driven individuals, Physical Review Letters 77, 2129–2132.

    Google Scholar 

  2. Derenyi, I.; Vicsek, T. 1995: Cooperative Transport of Brownian Particles, Physical Review Letters 75, 374–377.

    Google Scholar 

  3. Ebeling, W.; Schweitzer, F.; Tilch, B. 1999: Active Brownian Particles with Energy Depots Modelling Animal Mobility, BioSystems 49, 17–29.

    Google Scholar 

  4. Ebeling, W.; Schweitzer, F.; Tilch, B. 2000: Statistical Mechanics of Driven Canonical-Dissipative Systems and Applications to Swarm Dynamics (submitted for publication).

    Google Scholar 

  5. Erdmann, U.; Ebeling, W.; Schimansky-Geier, L.; Schweitzer, F. 1999: Brownian Particles far from Equilibrium, European Physical Journal B 15/1 (2000) 105–113.

    Article  ADS  Google Scholar 

  6. Feistel, R.; Ebeling, W. 1989: Evolution of Complex Systems. Self-Organization, Entropy and Development, Dordrecht: Kluwer.

    Google Scholar 

  7. Promherz, P.; Zeiler, A. 1994: Dissipative condensation of ion channels described by a Langevin-Kelvin equation, Physics Letters A 190, 33–37.

    Google Scholar 

  8. Helbing, D.; Schweitzer, F.; Keltsch, J.; Molnar, P. 1997: Active Walker Model for the Formation of Human and Animal Trail Systems, Physical Review E 56, 2527–2539.

    Google Scholar 

  9. Helbing, D.; Vicsek, T. 1999: Optimal Self-Organization, New Journal of Physics 1, 13.1–13.17.

    Google Scholar 

  10. Klimontovich, Yu. L. 1994: Nonlinear Brownian Motion, Physics-Uspekhi 37, 737–766.

    Google Scholar 

  11. Makarov, V., Ebeling, W., Velarde, M. 2000: Soliton-like waves on disipative Toda lattices, Interational Journal of Bifurcation & Chaos, in press.

    Google Scholar 

  12. Mikhailov, A. S.; Meinkohn, D. 1997: Self-Motion in Physico-Chemical Systems Far from Thermal Equilibrium, in: L. Schimansky-Geier, T. Pöschel (eds.): Stochastic Dynamics, Berlin: Springer, pp. 334–345.

    Google Scholar 

  13. Rayleigh, J. W. 1945: The Theory of Sound, 2nd edition, New York: Dover.

    Google Scholar 

  14. Rosé, H.; Hempel, H.; Schimansky-Geier, L. 1994: Stochastic Dynamics of Catalytic CO Oxidation on Pt(100), Physica A 206, 421.

    Google Scholar 

  15. Schienbein, M.; Gruler, H. 1993: Langevin Equation, Fokker-Planck Equation and Cell Migration, Bulletin of Mathematical Biology 55, 585–608.

    Google Scholar 

  16. Schimansky-Geier, L.; Mieth, M.; Rosé, H.; Malchow, H. 1995: Structure Formation by Active Brownian Particles, Physics Letters A 207, 140–146.

    Google Scholar 

  17. Schimansky-Geier, L.; Schweitzer, F.; Mieth, M. 1997: Interactive Structure Fromation with Brownian Particles, in: F. Schweitzer (ed.): Self-Organization of Complex Structures: From Individual to Collective Dynamics, London: Gordon and Breach, pp. 101–118.

    Google Scholar 

  18. Schweitzer, F.; Ebeling, W.; Tilch, B. 1998: Complex Motion of Brownian Particles with Energy Depots, Physical Review Letters 80, 5044–5047.

    Google Scholar 

  19. Schweitzer, F.; Holyst, J. 2000: Modelling Collective Opinion Formation by Means of Active Brownian Particles, European Physical Journal B (in press).

    Google Scholar 

  20. Schweitzer, F.; Lao, K.; Family, F. 1997: Active Random Walkers Simulate Trunk Trail Formation by Ants, BioSystems 41, 153–166.

    Google Scholar 

  21. Schweitzer, F.; Schimansky-Geier, L. 1994: Clustering of Active Walkers in a Two-Component System, Physica A 206, 359–379.

    Google Scholar 

  22. Schweitzer, F.; Tilch, B.; Ebeling, W. 2000: Uphill Motion of Active Brownian Particles in Piecewise Linear Potentials, European Physical Journal B 14, 157–168.

    Google Scholar 

  23. Tilch, B.; Schweitzer, F.; Ebeling, W. 1999: Directed Motion of Brownian Particles with Internal Energy Depot, Physica A 273, 294–314.

    Google Scholar 

  24. Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I.; Shochet. O. 1995: Novel Type of Phase Transition in a System of Self-Driven Particles, Physical Review Letters 75, 1226–1229.

    Google Scholar 

  25. Willebrand, H.; Niedernostheide, F. J.; Ammelt, E.; Dohmen, R.; Purwins, H.G. 1991: Spatio-Temporal Oscillations During Filament Splitting in Gas Discharge Systems, Physics Letters A 152, 437–445.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schweitzer, F. (2000). Active Motion of Brownian Particles. In: Freund, J.A., Pöschel, T. (eds) Stochastic Processes in Physics, Chemistry, and Biology. Lecture Notes in Physics, vol 557. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45396-2_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-45396-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41074-4

  • Online ISBN: 978-3-540-45396-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics