Advertisement

Spectroscopy of the Muonium Atom

  • Klaus-Peter Jungmann
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 570)

Abstract

Muonium is a hydrogen-like system which in many respects may be viewed as an ideal atom. Due to the close confinement of the bound state of the two ‘pointlike’ leptons it can serve as a test object for Quantum Electrodynamics. The nature of the muon as a heavy copy of the electron can be verified. Furthermore, searches for additional, yet unknown interactions between leptons can be carried out. Recently completed experimental projects cover the ground state hyperfine structure, the 1s-2s energy interval, a search for spontaneous conversion of muonium into antimuonium and a test of CPT and Lorentz invariance. Precision experiments allow the extraction of accurate values for the electromagnetic fine structure constant, the muon magnetic moment and the muon mass. Most stringent limits on speculative models beyond the standard theory have been set.

Keywords

Magnetic Anomaly Fundamental Constant Muon Spin Precision Experiment Muon Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.U. Martyn: in Quantum Electrodynamics, ed. T. Kinoshita, World Scientific, pp. 92–161 (1990); T. Kinoshita and W.J. Marciano, ibid. pp. 419-478Google Scholar
  2. 2.
    V.W. Hughes and G. zu Putlitz: Quantum Electrodynamics, ed. T. Kinoshita, World Scientific, pp. 822–904 (1990)Google Scholar
  3. 3.
    K. Jungmann: in Muon Science, eds. S.L. Lee, S.H. Kilcoyne and R. Cywinsky, Inst. of Physics Publ., pp. 405–461 (1999) and references thereinGoogle Scholar
  4. 4.
    M.I. Eides, H. Grotch and V.A. Shelyuto: Phys. Rep., to be published (2000), hep-ph/000215 (2000)Google Scholar
  5. 5.
    F. Biraben, T.W. Hänsch et al.: this book, pp. 17–41Google Scholar
  6. 6.
    P. Mohr: this edition, pp. 145–156Google Scholar
  7. 7.
    G.H. Eaton an S.H. Kilcoyne: Muon Science, eds. S.L. Lee, S.H. Kilcoyne and R. Cywinsky, Inst. of Physics Publ., p. 11 (1999)Google Scholar
  8. 8.
    V.W. Hughes et al.: Phys. Rev. Lett. 5, 63 (1960)CrossRefADSGoogle Scholar
  9. 9.
    W. Liu et al.: Phys. Rev. Lett. 82, 711 (1999)CrossRefADSGoogle Scholar
  10. 10.
    V.W. Hughes and T. Kinoshita: in Muon Physics, ed. V.W. Hughes and C.S. Wu, Academic Press, pp. 11–199 (1977)Google Scholar
  11. 11.
    Y. Myake et al.: Hyperfine Interactions 106, 237 (1997); A. Matsushita et al., Surf. Sci. 357-358, 961 (1996); A.P. Mills et al.: Phys. Rev. Lett. 56, 1464 (1986)CrossRefADSGoogle Scholar
  12. 12.
    K. Woodle et al.: Z. Phys. D 9 59 (1988); see also: A.C. Janissen et al.: Phys. Rev. A 42, 161 (1990)ADSGoogle Scholar
  13. 13.
    Steven Chu et al.: Phys. Rev. Lett. 60, 101 (1988); see also: K. Danzmann et al.: Phys. Rev. A 39, 6073 (1989)CrossRefADSGoogle Scholar
  14. 14.
    V. Meyer et al., Phys. Rev. Lett. 84, 1136 (2000)CrossRefADSGoogle Scholar
  15. 15.
    L. Willmann et al., Phys. Rev. Lett. 82, 49 (1999)CrossRefADSGoogle Scholar
  16. 16.
    L. Willmann and K. Jungmann: in Atomic Physics Methods in Modern Research, eds. K. Jungmann, J. Kowalski, I. Reinhard and F. Träger, Springer, pp. 43–56 (1997)Google Scholar
  17. 17.
    K. Jungmann et al.: Appl. Phys.B 60, S159 (1995)Google Scholar
  18. 18.
    C.J. Oram et al.: Phys. Rev. Lett. 52, 910 (1984)CrossRefADSGoogle Scholar
  19. 19.
    A. Badertscher et al.: Phys. Rev. Lett. 52, 914 (1984) and Phys. Rev. A 41, 93 (1990)CrossRefADSGoogle Scholar
  20. 20.
    S.H. Kettell: PhD thesis, Yale university (1990)Google Scholar
  21. 21.
    E. Fermi, Z. Phys. 60, 320 (1930)CrossRefADSGoogle Scholar
  22. 22.
    M.G. Boshier et al.: Phys. Rev. A 52, 1948 (1995)CrossRefADSGoogle Scholar
  23. 23.
    F.G. Mariam et al.: Phys. Rev. Lett. 49, 993 (1982)CrossRefADSGoogle Scholar
  24. 24.
    T, Kinoshita and M. Nio: Frontier Tests of QED and the Physics of the Vacuum, eds. E. Zavattini, D. Bakalov and C. Rizzo, Heron Press, pp. 151–167 (1998); T. Kinoshita: hep-ph/9808351 (1998); K. Pachucki: Phys. Rev. A 54, 1994 (1996); S. G. Karshenboim: Z. Phys. D 36, 11 (1996); S. A. Blundell, K.T. Cheng and J. Sapirstein: Phys. Rev. Lett. 78, 4914 (1997); M. I. Eides, H. Grotch and V.A. Shelyuto: Phys. Rev. D 58, 013008 (1998); V. Hund and H. Pilkuhn: J. Phys. B 33, 1617 (2000)Google Scholar
  25. 25.
    V.W. Hughes and T. Kinoshita: Rev. Mod. Phys. 71, S133 (1999); see also: T. Kinoshita: IEEE Trans. Instr. Meas. 44, 498 (1996), IEEE Trans. Instr. Meas. 46, 108 (1997) and Rep. Prog. Phys. 59, 1459 (1996)CrossRefGoogle Scholar
  26. 26.
    A.M. Jeffrey et al.: IEEE Trans. Instr. Meas. 46, 264 (1997)CrossRefGoogle Scholar
  27. 27.
    E.R. Williams et al.: IEEE Trans. Instr. Meas. 38, 233 (1989)CrossRefGoogle Scholar
  28. 28.
    E. Krüger, W. Nistler and W. Weirauch, IEEE Trans. Instr. Meas. 46, 101 (1997) and Metrologia 32, 117 (1995); W. Nistler, priv. com. (1998)CrossRefGoogle Scholar
  29. 29.
    S. Chu, 17th International Conference on Atomic Physics, Florence, Italy (2000)Google Scholar
  30. 30.
    R. Bluhm, V.A. Kostelecky and N. Russel: Phys. Rev. D 57, 3932 (1998)ADSGoogle Scholar
  31. 31.
    R. Bluhm, V.A. Kostelecky, C.D. Lane: Phys. Rev. Lett. 84, 1098 (2000)CrossRefADSGoogle Scholar
  32. 32.
    for details see: V.W. Hughes et al.: this edition, pp. 397–406Google Scholar
  33. 33.
    K. Jungmann et al.: Z. Phys. D 21, 241(1991)Google Scholar
  34. 34.
    F.E. Maas et al.: Phys. Lett. 187, 247 (1994)CrossRefMathSciNetGoogle Scholar
  35. 35.
    P. Bakule et al.: Appl. Phys.B 71, 11 (2000)ADSGoogle Scholar
  36. 36.
    S.L. Cornish et al.: J. Opt. Soc. Am.B 17, 6 (2000)CrossRefADSMathSciNetGoogle Scholar
  37. 37.
    V. Yakhontov and K. Jungmann: Z. Phys. D 38, 141 (1996)Google Scholar
  38. 38.
    V. Yakhontov, R. Santra and K. Jungmann: J. Phys.B 32, 1615 (1999)CrossRefADSGoogle Scholar
  39. 39.
    A.P. Mills: Hyperfine Interactions 76, 233 (1993)CrossRefADSGoogle Scholar
  40. 40.
    K. Pachucki et al.: J. Phys.B 29, 177 (1996); S. G. Karshenboim: Z. Phys. D 39, 109 (1997) and Can. J. Phys. 77, 241 (1999); K. Pachucki and S. G. Karshenboim: priv. com. (1999)CrossRefADSGoogle Scholar
  41. 41.
    R.M. Carey et al.: Phys. Rev. Lett. 82 1632 (1999)CrossRefADSGoogle Scholar
  42. 42.
    H.G. Dehmelt et al.: Phys. Rev. Lett. 83, 4694 (1999)CrossRefADSGoogle Scholar
  43. 43.
    A. Angelopoulos et al.: Phys. Lett.B 471, 332 (1999)CrossRefADSGoogle Scholar
  44. 44.
    J. Baily et al.: Nucl. Phys.B 150, 1 (1979)CrossRefADSGoogle Scholar
  45. 45.
    K. Jungmann: Hyperfine Interactions 127, 189 (2000)CrossRefADSGoogle Scholar
  46. 46.
    Y.B. Zeldovitch: Dan. SSR 86, 505 (1952)Google Scholar
  47. 47.
    B. Pontecorvo: Sov. Phys. JETP 37, 1751 (1959) and Sov. Phys. JETP 6, 381 (1958)Google Scholar
  48. 48.
    N. Cabbibo and R. Gatto: Phys. Rev. Lett. 5, 114 (1960); N. Cabbibo: Nuovo Cim. 19, 612 (1961)CrossRefADSGoogle Scholar
  49. 49.
    E.J. Konopinski and H.M. Mahmoud: Phys. Rev. 92, 1045 (1953)zbMATHCrossRefADSGoogle Scholar
  50. 50.
    G. Feinberg and S. Weinberg: Phys. Rev. Lett. 6, 381 (1961)CrossRefADSGoogle Scholar
  51. 51.
    T.D. Lee and C.N. Yang: Phys. Rev. 98, 1501 (1956)CrossRefADSGoogle Scholar
  52. 52.
    A. Halprin: Phys. Rev. Lett. 48, 1313 (1982)CrossRefADSGoogle Scholar
  53. 53.
    P. Herczeg and R.N. Mohapatra: Phys. Rev. Lett. 69, 2475 (1992)CrossRefADSGoogle Scholar
  54. 54.
    W.S. Hou and G.G. Wong: Phys. Rev. D 53 1537 (1996)CrossRefADSGoogle Scholar
  55. 55.
    A. Halprin and A. Massiero: Phys. Rev. D 48, 2987 (1993)ADSGoogle Scholar
  56. 56.
    R.N. Mohapatra: Z. Phys. C 56, S117 (1992)CrossRefMathSciNetGoogle Scholar
  57. 57.
    H. Fujii et al.: Phys. Rev. D 49, 559 (1994)CrossRefADSGoogle Scholar
  58. 58.
    B.E. Matthias et al.: Phys. Rev. Lett. 66, 2716 (1991)CrossRefADSGoogle Scholar
  59. 59.
    R. Abela et al.: Phys. Rev. Lett. 77, 1951 (1996)CrossRefADSGoogle Scholar
  60. 60.
    L. Chatterjee et al.: Phys. Rev. D 46, 46 (1992)MathSciNetGoogle Scholar
  61. 61.
    A. Czarnecki, G.P. Lepage and W.J. Marciano: Phys. Rev. D 61, 073001 (2000)Google Scholar
  62. 62.
    K. Horrikawa and K. Sasaki: Phys. Rev. D 53, 560 (1996)ADSGoogle Scholar
  63. 63.
    G.G. Wong and W.S. Hou: Phys. Lett.B 357, 145 (1995)CrossRefADSGoogle Scholar
  64. 64.
    V.A. Gordeev et al.: JETP Lett. 59, 589 (1994)ADSMathSciNetGoogle Scholar
  65. 65.
    F. Cuypers and S. Davidson: Eur. Phys. J. C 2, 503 (1998)ADSCrossRefGoogle Scholar
  66. 66.
    G.G. Wong and W.S. Hou: Phys. Rev. D 50, R2962 (1994)ADSGoogle Scholar
  67. 67.
    P. Frampton: Phys. Rev. Lett. 69, 1889 (1994); see also: hep-ph/97112821 (1997)Google Scholar
  68. 68.
    P. Frampton and S. Harada: hep-ph/9711448 (1997) and hep-ph/0002017 (2000)Google Scholar
  69. 69.
    P. Frampton: priv. comm. (1998); V. Pleitez: Phys. Rev. D 61, 057903 (2000)Google Scholar
  70. 70.
    P. Herczeg: in Beyond the Desert 1997, ed. H.V. Klapdor-Kleingrothaus and H. Päs, Inst. of Physics Publishing, pp. 124–133 (1998)Google Scholar
  71. 71.
    C. Athanassopoulos et al.: Phys. Rev. C 54, 2685 (1996); see also: nucl-ex/9709006ADSGoogle Scholar
  72. 72.
    R.B. Palmer: in Handbook of Accelerator Physics and Engineering, eds. A. Wu Chao and M. Tigner, World Scientific, pp. 33–35 (1999)Google Scholar
  73. 73.
    Y. Kuno: in Proceedings of the KUICR98 Workshop, Iji, Kyoto, Japan (1998); see also: in Proceedings of the HISMUS99 Workshop, KEK, Tsukuba, Japan (1999), in printGoogle Scholar
  74. 74.
    D. Kawall et al.: Proceedings of the Workshop at the First Muon Collider and the Front End of a Muon Collider, eds. S. Geer and R. Raja, AIP, pp. 486–493 (1998)Google Scholar
  75. 75.
    M.G. Boshier et al.: Comm. At. Mol. Phys. 33, 17 (1996); K. Jungmann: Z. Phys. C 56, 59 (1992)Google Scholar
  76. 76.
    R. Pohl et al.: this edition, pp. 454–466Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Klaus-Peter Jungmann
    • 1
  1. 1.Physikalisches Institut der Universität HeidelbergHeidelbergGermany

Personalised recommendations