Towards a Precision Measurement of the Lamb Shift in Hydrogen-Like Nitrogen

  • E.G. Myers
  • M.R. Tarbutt
Part of the Lecture Notes in Physics book series (LNP, volume 570)


Measurements of the 2S 1/2-2P 1/2 and 2S 1/2-2P 3/2 transitions in moderate Z hydrogen-like ions can test Quantum-Electrodynamic calculations relevant to the interpretation of high-precision spectroscopy of atomic hydrogen. There is now particular interest in testing calculations of the two-loop self-energy. Experimental conditions are favorable for a measurement of the 2S 1/2 - 2P 3/2 transition in N 6+ using a carbon dioxide laser. As a preliminary experiment, we have observed the 2S 1/2 - 2P 3/2 transition in 14 N 6+ using a 2.5 MeV/amu foil-stripped ion beam and a continuous-wave CO2 laser operating on the hot band of 12C16O2. The measured value of the transition centroid, 834.94(7) cm-1, agrees with, but is less precise than theory. However, the counting rate and signal-to-background ratio obtained indicate, that with careful control of systematics, a precision test of the theory is practical. Work towards constructing such a set-up is in progress.


Interaction Region Laser Line Proportional Counter Lamb Shift Intersection Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.A. Yerokhin: Phys. Rev. A62, 12508 (2000)ADSGoogle Scholar
  2. 2.
    I. Goidenko, L. Labzowsky, A. Nefiodov, G. Plunien and G. Soff: Phys. Rev. Lett., 83, 2312 (1999)CrossRefADSGoogle Scholar
  3. 3.
    S. Mallampalli and J. Sapirstein: Phys. Rev. Lett. 80, 5297 (1998)CrossRefADSGoogle Scholar
  4. 4.
    C. Schwob et al.: Phys. Rev. Lett. 82, 4960 (1999)CrossRefADSGoogle Scholar
  5. 5.
    D.J. Berkeland, E.A. Hinds, and M. G. Boshier: Phys. Rev. Lett. 75, 2470 (1995)CrossRefADSGoogle Scholar
  6. 6.
    J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T.W. Hansch: Phys. Rev. Lett. 84, 3232 (2000)CrossRefADSGoogle Scholar
  7. 7.
    M. Niering et al.: Phys. Rev. Lett. 84, 5496 (2000)CrossRefADSGoogle Scholar
  8. 8.
    K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. Konig, and T.W. Hansch: J. Phys. B29, 177 (1996)ADSGoogle Scholar
  9. 9.
    H.W. Kugel and D.E. Murnick: Rep. Prog. Phys. 40, 297 (1977)CrossRefADSGoogle Scholar
  10. 10.
    H.-J. Pross, D. Budelsky, L. Kremer, D. Platte, P. vonBrentano, J. Gassen, D. Muller, F. Scheuer, A. Pape, and J.C. Sens: Phys. Rev. A 48, 1875 (1993)CrossRefADSGoogle Scholar
  11. 11.
    V.G. Ivanov and S.K. Karshenboim: this edition, pp. 637–650Google Scholar
  12. 12.
    W. R. Johnson and G. Soff: At. Data. Nucl. Data Tables 33 (1985) 405CrossRefADSGoogle Scholar
  13. 13.
    J.K. Thompson, D.J.H. Howie, and E.G. Myers: Phys. Rev. A57, 180 (1998)ADSGoogle Scholar
  14. 14.
    E.G. Myers and M.R. Tarbutt: Phys. Rev.A 61, 10501(R) (1999)CrossRefGoogle Scholar
  15. 15.
    A.G. Maki, C.C. Chou, K.M. Evenson, L.R. Zink, and J.T. Shy: J. Mol. Spec. 167, 211 (1994)CrossRefADSGoogle Scholar
  16. 16.
    J.F. Ziegler: Stopping Cross-Sections For Energetic Ions In All Elements, Pergamon Press, New York, (1980)Google Scholar
  17. 17.
    D. Mueller, J. Gassen, F. Scheuer, H.D. Straeter, and P. vonBrentano: Z. Phys. D18, 249 (1991)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • E.G. Myers
    • 1
  • M.R. Tarbutt
    • 2
  1. 1.Department of PhysicsFlorida State UniversityFloridaUSA
  2. 2.Clarendon LaboratoryUniversity of OxfordOxfordUK

Personalised recommendations