Advertisement

Ground-State Hyperfine Structure of Heavy Hydrogen-Like Ions

  • T. Kühl
  • S. Borneis
  • A. Dax
  • T. Engel
  • S. Faber
  • M. Gerlach
  • C. Holbrow
  • G. Huber
  • D. Marx
  • P. Merz
  • W. Quint
  • F. Schmitt
  • P. Seelig
  • M. Tomaselli
  • H. Winter
  • M. Wuertz
  • K. Beckert
  • B. Franzke
  • F. Nolden
  • H. Reich
  • M. Steck
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 570)

Abstract

Contributions of quantum electrodynamics (QED) to the combined electric and magnetic interaction between the electron and the nucleus can be studied by optical spectroscopy in high-Z hydrogen-like heavy ions. The transition studied is the ground-state hyperfine structure transition, well known from the 21 cm line in atomic hydrogen. The hyperfine splitting of the is ground state of hydrogen-like systems constitutes the simplest and most basic magnetic interaction in atomic physics. The Z3-increase leads to a transition energy in the UV-region of the optical spectrum for the case of Bi82+. At the same time, the QED correction rises to nearly 1 fraction of higher order contributions. This situation is particularly useful for a comparison with non-perturbative QED calculations. The combination of exceptionally intense electric and magnetic fields electric and magnetic fields is unique. This transition has become accessible to precision laser spectroscopy at the high-energy heavy-ion storage ring at GSI-Darmstadt in the hydrogen-like 209Bi82+ and 207Pb81+. In the meantime, 165Ho66+ and 185,187Re74+ were also studied with reduced resolution by conventional optical spectroscopy at the SuperEBIT ion trap at Lawrence Livermore National Laboratory.

Keywords

Laser Spectroscopy Lawrence Livermore National Laboratory Magnetic Rigidity Precision Laser Spectroscopy Doppler Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Essen, R.W. Donaldson, M.J. Bangham, and E.G. Hope: Nature 229 (1971)Google Scholar
  2. 2.
    V. M. Shabaev: J. Phys. B27 (1994) 5825ADSGoogle Scholar
  3. 3.
    G.I. Budker, A.N. Skrinsky: Us. Fiz. Nauk 124 (1978) 561; Sov. Phys. 21 (1978) 277Google Scholar
  4. 4.
    I. Klaft et al.: Phys. Rev. Lett. 73 (1994) 2425CrossRefADSGoogle Scholar
  5. 5.
    P. Seelig et al.: Phys. Rev. Lett. vol. 81 (1998) 81 (1998) 4824Google Scholar
  6. 6.
    J.R. Crespo Lopez-Urrutia et al.: Phys. Rev. Lett. 77 (1996) 826, and presented at the conference Hydrogen Atom 2 (unpublished)CrossRefADSGoogle Scholar
  7. 7.
    V. Shabaev et al.: this edition, pp. 714–726Google Scholar
  8. 8.
    V.M. Shabaev, M.B. Shabaeva, I.I. Tupitsyn: Phys. Rev. A 52 (1995) 3686CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • T. Kühl
    • 1
  • S. Borneis
    • 1
  • A. Dax
    • 1
  • T. Engel
    • 2
  • S. Faber
    • 1
  • M. Gerlach
    • 1
  • C. Holbrow
    • 3
  • G. Huber
    • 4
  • D. Marx
    • 1
  • P. Merz
    • 4
  • W. Quint
    • 1
  • F. Schmitt
    • 1
  • P. Seelig
    • 1
  • M. Tomaselli
    • 5
  • H. Winter
    • 2
  • M. Wuertz
    • 2
  • K. Beckert
    • 1
  • B. Franzke
    • 1
  • F. Nolden
    • 1
  • H. Reich
    • 1
  • M. Steck
    • 1
  1. 1.GSI Gesellschaft für SchwerionenforschungDarmstadtGermany
  2. 2.Institute of PhysicsDarmstadt UniversityDarmstadtGermany
  3. 3.Institute of PhysicsColgate UniversityHamilton, New YorkUSA
  4. 4.Institute of PhysicsMainz UniversityMainzGermany
  5. 5.Institute of Nuclear PhysicsDarmstadt UniversityDarmstadtGermany

Personalised recommendations