Advertisement

Indium Single-Ion Optical Frequency Standard

  • Thomas Becker
  • Mario Eichenseer
  • Alexander Yu. Nevsky
  • Ekkehard Peik
  • Christian Schwedes
  • Mikhail N. Skvortsov
  • Joachim von Zanthier
  • Herbert Walther
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 570)

Abstract

We are investigating the 5 s 2 1 S 0 → 5 s 5 p 3 P 0 transition of a single trapped laser-cooled 115In+ ion as a candidate for an optical frequency standard. This line with a natural linewidth of only 0.8 Hz is highly immune to systematic frequency shifts. For sideband laser cooling and fluorescence detection of the indium ion the 5 s 2 1 S 0 → 5 s 5 p 3 P 1 transition at 230.6 nm is excited. Temperatures below 100 μK and a mean vibrational quantum number \( \left\langle n \right\rangle < 1 \) of the ion in the trap have been reached. For the clock transition a resolution of 1.3·10-13 (linewidth 170 Hz) has been obtained so far, limited by the short term frequency fluctuations of the clock laser. The absolute frequency of the 1 S 03 P 0 transition was measured by making a link to the reference frequency of the methane-stabilised HeNe laser using a frequency chain.

Keywords

Stark Shift Clock Transition Natural Linewidth Optical Frequency Standard Clock Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Dehmelt: IEEE Trans. Instrum. Meas. 31, 83 (1982)ADSGoogle Scholar
  2. 2.
    For a recent review see: A. A. Madej and J. E. Bernard: in ‘Frequency Measurement and Control: Advanced Techniques and Future Trends’, Springer Topics in Applied Physics, Ed.: A. N. Luiten (Springer, Berlin, 2000) pp. 149–190Google Scholar
  3. 3.
    R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist: Phys. Rev. Lett. 85, 2462 (2000)CrossRefADSGoogle Scholar
  4. 4.
    N. Yu, X. Zhao, H. Dehmelt, and W. Nagourney: Phys. Rev. A 50, 2738 (1994)CrossRefADSGoogle Scholar
  5. 5.
    J. E. Bernard, L. Marmet, and A. Madej: Opt. Commun. 150, 170 (1998)CrossRefADSGoogle Scholar
  6. 6.
    C. Tamm, D. Engelke, and V. Bühner: Phys. Rev. A 61, 053405 (2000)CrossRefADSGoogle Scholar
  7. 7.
    E. Peik, G. Hollemann, and H. Walther: Phys. Rev. A 49, 402 (1994)CrossRefADSGoogle Scholar
  8. 8.
    G. Hollemann, E. Peik, and H. Walther: Opt. Lett. 19, 192 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    G. Hollemann, E. Peik, A. Rusch, and H. Walther: Opt. Lett. 20, 1871 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    Th. J. Kane and R. L. Byer: Opt. Lett. 10, 65 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    I. Freitag, R. Henking, A. Tünnermann, and H. Welling: Opt. Lett. 20, 2499 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    D. J. Wineland and W. M. Itano: Phys. Rev. A 20, 1521 (1979)CrossRefADSGoogle Scholar
  13. 13.
    F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland: Phys. Rev. Lett. 62, 403 (1989)CrossRefADSGoogle Scholar
  14. 14.
    E. Peik, J. Abel, Th. Becker, J. v. Zanthier, and H. Walther: Phys. Rev. A. 60, 439 (1999)CrossRefADSGoogle Scholar
  15. 15.
    N. Yu, W. Nagourney, and H. Dehmelt: J. Appl. Phys 69, 3779 (1991)CrossRefADSGoogle Scholar
  16. 16.
    C. Schrama, E. Peik, W. W. Smith, and H. Walther: Opt. Commun. 101, 32 (1993)CrossRefADSGoogle Scholar
  17. 17.
    J. v. Zanthier, J. Abel, Th. Becker, M. Fries, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, A. Yu. Nevsky, M. N. Skvortsov, and S. N. Bagayev: Opt. Commun. 166, 57 (1999)CrossRefADSGoogle Scholar
  18. 18.
    J. v. Zanthier, Th. Becker, M. Eichenseer, A. Yu. Nevsky, Ch. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, Th. Udem, T. W. Hänsch, P. V. Pokasov, M. N. Skvortsov, and S. N. Bagayev: Opt. Lett. (in print, Dec. 2000)Google Scholar
  19. 19.
    See the contribution by Th. Udem et al.: this edition, pp. 125–144Google Scholar
  20. 20.
    S. N. Bagayev, A. K. Dmitriyev, and P. V. Pokasov: Laser Phys. 7, 989 (1997)Google Scholar
  21. 21.
    Presented by S. Bize et al. at the conference Hydrogen Atom 2 (unpublished)Google Scholar
  22. 22.
    J. Reichert, R. Holzwarth, Th. Udem, and T. W. Hänsch: Opt. Commun. 172, 59 (1999)CrossRefADSGoogle Scholar
  23. 23.
    M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon: Phys. Rev. Lett. 84, 5496 (2000)CrossRefADSGoogle Scholar
  24. 24.
    V. A. Dzuba, V. V. Flambaum, and J. K. Webb: Phys. Rev. Lett. 82, 888 (1999)CrossRefADSGoogle Scholar
  25. 25.
    V. A. Dzuba and V. V. Flambaum: Phys. Rev. A 61, 034502 (2000)CrossRefADSGoogle Scholar
  26. 26.
    V. A. Dzuba and V. V. Flambaum: this edition, pp. 564–575Google Scholar
  27. 27.
    T. M. Miller and B. Bederson, in Adv. in Atomic and Mol. Phys., Vol. 13, Eds.: D. R. Bates and B. Bederson (Academic, New York, 1977)Google Scholar
  28. 28.
    N. L. Manakov and V. G. Palchikov: Opt. Spectrosc. (USSR) 46, 688 (1979)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Thomas Becker
    • 1
    • 2
  • Mario Eichenseer
    • 1
    • 2
  • Alexander Yu. Nevsky
    • 1
    • 3
  • Ekkehard Peik
    • 1
    • 2
  • Christian Schwedes
    • 1
    • 2
  • Mikhail N. Skvortsov
    • 1
    • 3
  • Joachim von Zanthier
    • 1
    • 2
  • Herbert Walther
    • 1
    • 2
  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany
  2. 2.Sektion Physik der Ludwig-Maximilians-UniversitätMünchenGermany
  3. 3.Institute of Laser PhysicsNovosibirskRussia

Personalised recommendations