Advertisement

Hyperfine Structure Measurements of Antiprotonic Helium and Antihydrogen

  • Eberhard Widmann
  • John Eades
  • Ryugo S. Hayano
  • Masaki Hori
  • Dezso Horvath
  • Takashi Ishikawa
  • Bertalan Juhazs
  • Jun Sakaguchi
  • Hiroyuki A. Torii
  • Hidetoshi Yamaguchi
  • Toshimitsu Yamazaki
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 570)

Abstract

This paper describes measurements of the hyperfine structure of two antiprotonic atoms that are planned at the Antiproton Decelerator (AD) at CERN. The first part deals with antiprotonic helium, a three-body system of α-particle, antiproton and electron that was previously studied at LEAR. A measurement will test existing three-body calculations and may— through comparison with these theories— determine the magnetic moment \( \mu _{\overline {\text{p}} } \) of the antiproton more precisely than currently available, thus providing a test of CPT invariance. The second system, antihydrogen, consisting of an antiproton and apositron, is planned to be produced at thermal energies at the AD. A measurement of the ground-state hyperfine splitting \( v_{{\text{HF}}} \left( {\overline {\text{H}} } \right) \) , which for hydrogen is one of the most accurately measuredp hysical quantities, will directly yielda precise value for \( \mu _{\overline {\text{p}} } \) , andalso compare the internal structure of proton andan tiproton through the contribution of the magnetic size of the \( \overline {\text{p}} {\mathbf{ }}{\text{to}}{\mathbf{ }}\nu _{{\text{HF}}} \left( {\overline {\text{H}} } \right) \) .

Keywords

Microwave Cavity Magnetic Form Factor Antiprotonic Helium Antihydrogen Atom Antiproton Decelerator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    T. Azuma et al: CERN/SPSC 97-19, CERN/SPSC 2000-04; ASACUSA home page http://www.cern.ch/ASACUSA/
  2. 4.
    T. Yamazaki: this edition, pp. 246–265Google Scholar
  3. 5.
    C. Amsler et al.: this edition, pp. 469–488Google Scholar
  4. 6.
    J. Walz et al.: this edition, pp. 521–527Google Scholar
  5. 7.
    D.D. Bakalov et al.: Phys. Lett. A 211, 223 (1996)CrossRefADSMathSciNetGoogle Scholar
  6. 8.
    D.D. Bakalov and V. I. Korobov: Phys. Rev. A 57, 1662 (1998)CrossRefADSGoogle Scholar
  7. 9.
    V.I. Korobov and D. D. Bakalov: Phys. Rev. Lett. 79, 3379 (1997)CrossRefADSGoogle Scholar
  8. 10.
    N. Yamanaka, Y. Kino, M. Kamimura, and H. Kudo: Phys. Rev. A, in printGoogle Scholar
  9. 11.
    Y. Kino, M. Kamimura, and H. Kudo: Hyperfine Interaction 119, 201 (1999)CrossRefADSGoogle Scholar
  10. 12.
    E. Widmann at al.: Phys. Lett. B 404, 15 (1997)CrossRefADSGoogle Scholar
  11. 13.
    G. Korenman: private communication (1999)Google Scholar
  12. 14.
    A. Kreissl et al.: Z. Phys. C 37, 557 (1988)CrossRefADSGoogle Scholar
  13. 15.
    D. Kleppner: this edition, pp. 42–56Google Scholar
  14. 16.
    C. Cesar et al.: Phys. Rev. Lett. 77, 255 (1996)CrossRefADSGoogle Scholar
  15. 17.
    J.R. Sapirstein and D. R. Yennie: ‘Theory of Hydrogenic Bound States’. In: Quantum Electrodynamics, ed. by T. Kinoshita (World Scientific, Singapore 1990) pp. 560–672Google Scholar
  16. 18.
    G.G. Simon, Ch. Schmitt, F. Borokowski and V. H. Walther: Nucl. Phys. A 333, 381 (1980)CrossRefADSGoogle Scholar
  17. 19.
    S. G. Karshenboim: Can. J. Phys. 77, 241 (1999)CrossRefADSGoogle Scholar
  18. 20.
    Th. Udem et al.: Phys. Rev. Lett. 79, 2646 (1997)CrossRefADSGoogle Scholar
  19. 21.
    N. Ramsey: ‘Atomic Hydrogen Hyperfine Structure Experiments’. In: Quantum Electrodynamics, ed. by T. Kinoshita (World Scientific, Singapore 1990) pp. 673–695Google Scholar
  20. 22.
    I.I. Rabi, J.M.B. Kellogg and J.R. Zacharias: Phys. Rev. 46, 157 and 163 (1934); J.M.B. Kellogg, I.I. Rabi and J.R. Zacharias: Phys. Rev. 50, 472 (1936)CrossRefADSGoogle Scholar
  21. 23.
    J.E. Nafe and E.B. Nelson: Phys. Rev. 73, 718 (1948)CrossRefADSGoogle Scholar
  22. 24.
    A.G. Prodell and P. Kusch: Phys. Rev. 88, 184 (1952)CrossRefADSGoogle Scholar
  23. 25.
    H.M. Goldenberg, D. Kleppner and N.F. Ramsey: Phys. Rev. Lett. 8, 361 (1960)CrossRefADSGoogle Scholar
  24. 26.
    L. Essen, R.W. Donaldson, M.J. Bangham and E.G. Hope: Nature 229, 110 (1971)CrossRefADSGoogle Scholar
  25. 27.
    H. Hellwig et al.: Proc. IEEE Trans. IM-19, 200 (1970)Google Scholar
  26. 28.
    S. G. Karshenboim: Phys. Lett A 225, 97 (1997)CrossRefADSGoogle Scholar
  27. 29.
    M. Niering et al.: Phys. Rev. Lett. 84, (2000)Google Scholar
  28. 30.
    S.R. Lundeen and F.M. Pipkin: Phys. Rev. Lett. 46, 232 (1981)CrossRefADSGoogle Scholar
  29. 31.
    D.E. Groom et al.: Europ. Phys. J. C 15, 1 (2000)Google Scholar
  30. 32.
    R. Landua, ATHENA spokesman: private communication (2000)Google Scholar
  31. 33.
    P. Kusch and V.W. Hughes: ‘Atomic and Molecular Beam Spectroscopy’. In: Encyclopedia of Physics Vol. XXXVII/1, ed. by S. Flügge (Springer, Berlin 1959) pp. 1–172Google Scholar
  32. 34.
    F. Anderegg, E.M. Hollmann, and C.F. Driscoll: Phys. Rev. Lett. 81, 4875 (1998)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Eberhard Widmann
    • 1
  • John Eades
    • 2
  • Ryugo S. Hayano
    • 1
  • Masaki Hori
    • 2
  • Dezso Horvath
    • 3
  • Takashi Ishikawa
    • 1
  • Bertalan Juhazs
    • 4
  • Jun Sakaguchi
    • 1
  • Hiroyuki A. Torii
    • 5
  • Hidetoshi Yamaguchi
    • 1
  • Toshimitsu Yamazaki
    • 6
  1. 1.Department of PhysicsUniversity of TokyoJapan
  2. 2.CERNGenevaSwitzerland
  3. 3.KFKI Research Institute for ParticleNuclear PhysicsBudapestHungary
  4. 4.University of DebrecenHungary
  5. 5.Institute of PhysicsUniversity of TokyoJapan
  6. 6.RI Beam Science LaboratoryRIKENSaitamaJapan

Personalised recommendations