Advertisement

Pionic Hydrogen: Status and Outlook

  • D. F. Anagnostopoulos
  • S. Biri
  • G. Borchert
  • W. H. Breunlich
  • M. Cargnelli
  • J. -P. Egger
  • B. Gartner
  • D. Gotta
  • P. Hauser
  • M. Hennebach
  • P. Indelicato
  • T. Jensen
  • R. King
  • F. Kottmann
  • B. Lauss
  • Y. W. Liu
  • V. E. Markushin
  • J. Marton
  • N. Nelms
  • G. C. Oades
  • G. Rasche
  • P. A. Schmelzbach
  • L. M. Simons
  • J. Zmeskal
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 570)

Abstract

The measurement of the strong interaction shift and width of the ground state in the pionic hydrogen atom determines two different linear combinations of the two isospin separated s-wave scattering lengths of the pion nucleon system. If both quantities are measured with a precision of about 1% a stringent test of chiral perturbation theory and a determination of the pion nucleon coupling constant can be obtained. Past measurements determined the shift with an accuracy better than 1%, and the width with an accuracy of 9%. Additional information from pionic deuterium measurements has been used in order to extract isospin separated scattering lengths with sufficient accuracy. Future measurements plan to directly measure the width of pionic hydrogen with an accuracy on the level on 1%.

Keywords

Electron Cyclotron Resonance Chiral Perturbation Theory Muonic Hydrogen Exotic Atom Electromagnetic Correction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Gasser and H. Leutwyler: Phys. Rep. 87C, 77 (1982)CrossRefADSGoogle Scholar
  2. 2.
    J. Gasser and H. Leutwyler: Ann. Phys. (N.Y.) 158, 124 (1984)MathSciNetGoogle Scholar
  3. 3.
    E. Jenkins and A.V. Manohar: Phys. Lett. B 255, 558 (1991)CrossRefADSGoogle Scholar
  4. 4.
    S. Deser et al.: Phys. Rev. 96, 774 (1954)CrossRefADSGoogle Scholar
  5. 5.
    G. Rasche and W.S. Woolcock: Nucl. Phys. A 381, 405 (1982)CrossRefADSGoogle Scholar
  6. 6.
    J. Spuller et al.: Phys. Lett. 67B, 479 (1977)ADSGoogle Scholar
  7. 7.
    D. Sigg et al.: Nucl. Phys. A 609, 310 (1996)CrossRefADSGoogle Scholar
  8. 8.
    A. Rusetsky: Frascati Physics Series Vol.XVI, Frascati, 669 (1999)Google Scholar
  9. 9.
    S. Lenz et al.: Phys. Lett. B 416, 50 (1998)CrossRefADSGoogle Scholar
  10. 10.
    D. Sigg et al.: Nucl. Phys. A 609, 269 (1996)CrossRefADSGoogle Scholar
  11. 11.
    E. Matsinos: Phys. Rev. C 56, 3014 (1997)CrossRefADSGoogle Scholar
  12. 12.
    G. Höhler: In: Proceedings of the Eighth International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon, Zuoz, Switzerland, pp. 123 and 167 (1999)Google Scholar
  13. 13.
    G. Höhler, In: Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Vol. I/9B2, ed. H. Schopper, Springer Verlag (1983)Google Scholar
  14. 14.
    R. A. Arndt et al.: Nucl. Phys. A 640, 199 (1998)CrossRefGoogle Scholar
  15. 15.
    T.E.O. Ericson et al.: Phys. Scripta T87, 71 (2000)CrossRefADSGoogle Scholar
  16. 16.
    H.-Ch. Schröder et al.: Phys. Lett. B 469, 25 (1999)CrossRefADSGoogle Scholar
  17. 18.
    S. Weinberg: Phys. Rev. Lett. 17, 616 (1966)CrossRefADSGoogle Scholar
  18. 19.
    Y. Tomozawa: Nuovo Cim. 46A, 707 (1966)CrossRefADSGoogle Scholar
  19. 20.
    M. Mojzis: Eur. Phy. J. C2, 181 (1998)ADSCrossRefGoogle Scholar
  20. 21.
    V. Bernard, N. Kaiser and Ulf-G. Meissner: Phys. Rev. C 52 2185 (1995)CrossRefADSGoogle Scholar
  21. 22.
    P. Hauser et al.: Phys. Rev. C 58, 1869 (1998)CrossRefADSGoogle Scholar
  22. 23.
    A. Badertscher et al.: Phys. Lett. B 392, 278 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • D. F. Anagnostopoulos
    • 1
  • S. Biri
    • 2
  • G. Borchert
    • 3
  • W. H. Breunlich
    • 4
  • M. Cargnelli
    • 4
  • J. -P. Egger
    • 5
  • B. Gartner
    • 4
  • D. Gotta
    • 3
  • P. Hauser
    • 6
  • M. Hennebach
    • 4
  • P. Indelicato
    • 7
  • T. Jensen
    • 6
  • R. King
    • 4
  • F. Kottmann
    • 8
  • B. Lauss
    • 4
  • Y. W. Liu
    • 6
  • V. E. Markushin
    • 6
  • J. Marton
    • 4
  • N. Nelms
    • 9
  • G. C. Oades
    • 10
  • G. Rasche
    • 11
  • P. A. Schmelzbach
    • 6
  • L. M. Simons
    • 6
  • J. Zmeskal
    • 4
  1. 1.Department of Material ScienceUniversity of IoanninaIoanninaGreece
  2. 2.Institute of Nuclear Research (ATOMKI) of the Hungarian Academy of SciencesDebrecenHungary
  3. 3.Institut für KernphysikForschungszentrum JülichJülichGermany
  4. 4.Institut für MittelenergiephysikÖsterreichische Akademie der WissenschaftenWienAustria
  5. 5.Institut de Physique de l’Université de NeuchâtelNeuchâtelSwitzerland
  6. 6.Paul-Scherrer-Institut (PSI)VilligenSwitzerland
  7. 7.Laboratoire Kastler-BrosselUniversité Pierre et Marie CurieParisFrance
  8. 8.Institut für TeilchenphysikETH ZürichZürichSwitzerland
  9. 9.Department of Astronomy and PhysicsUniversity of LeicesterLeicesterEngland
  10. 10.Institute of PhysicsAarhus UniversityAarhusDenmark
  11. 11.Institut für Theoretische PhysikUniversität ZürichSwitzerland

Personalised recommendations