Skip to main content

Antihydrogen Production and Precision Spectroscopy with ATHENA/AD-1

  • Chapter
  • First Online:
The Hydrogen Atom

Abstract

CPT invariance is a fundamental property of quantum field theories in flat space-time. Principal consequences include the predictions that particles and their antiparticles have equal masses and lifetimes, and equal and opposite electric charges and magnetic moments. It also follows that the fine structure, hyperfine structure, and Lamb shifts of matter and antimatter bound systems should be identical.

It is proposed to generate new stringent tests of CPT using precision spectroscopy on antihydrogen atoms. An experiment to produce antihydrogen at rest has been approved for running at the Antiproton Decelerator (AD) at CERN. We describe the fundamental features of this experiment and the experimental approach to the first phase of the program, the formation and identification of low energy antihydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Lüders: Kong. Danske Vidensk. Selsk. Mat.-Fys. Medd. 28, 1 (1957); and G. Lüders: Ann. Phys. 2, 1 (1954)

    Google Scholar 

  2. W. Pauli: in: Niels Bohr and the Development of Physics, ed. by W. Pauli (Pergamon, New York) pp. 30–57 (1955)

    Google Scholar 

  3. J. S. Bell: Proc. Roy. Soc. A 231, 479 (1955)

    Article  ADS  Google Scholar 

  4. R. Jost: Helv. Phys. Acta 30, 409 (1957) and R. Jost: The General Theory of Quantized Fields American Mathematical Society, Providence, Rhode Island, (1965)

    Google Scholar 

  5. J. J. Sakurai: Invariance Principles and Elementary Particles Princeton University Press, Princeton (1964) and R. F. Streater, and A. S. Wightman: PCT, Spin & Statistics, and All That (Benjamin, New York, 1964)

    Google Scholar 

  6. Particle Data Group: Phys. Lett. B204, 46 (1988)

    Google Scholar 

  7. R. S. Van Dyck: P. B. Schwinberg, and H. G. Dehmelt: Phys. Rev. Lett. 59, 26 (1987)

    Article  ADS  Google Scholar 

  8. G. Gabrielse, D. Phillips, W. Quint, H. Kalinowsky, and G. Rouleau: Phys. Rev. Lett. 74, 3544 (1995)

    Article  ADS  Google Scholar 

  9. E. Shabalin: Physics of Atomic Nuclei 57, 1862 (1994)

    Google Scholar 

  10. C. M. Will: Theory and Experiment in Gravitational Physics Cambridge University Press, Cambridge (1981)

    Google Scholar 

  11. M. M. Nieto, and T. G. Goldman: Physics Reports 205, 221 (1991)

    Article  ADS  Google Scholar 

  12. F. C. Witteborn, and W. M. Fairbank: Phys. Rev. Lett. 19, 1049 (1967)

    Article  ADS  Google Scholar 

  13. R. Colella, A. W. Overhauser, and S. A. Werner: Phys. Rev. Lett. 34, 1472 (1975)

    Article  ADS  Google Scholar 

  14. R. J. Hughes: in New and Exotic Phenomena’90, eds. O. Fackler and J. Thranh Thanh Van, Editions Frontieres, Gif-sur-Yvettes, 1990) pp. 263–275

    Google Scholar 

  15. T. Goldman, R. J. Hughes, and M. M. Nieto: Phys. Lett B 171, 217 (1986)

    Article  ADS  Google Scholar 

  16. W. G. Unruh, and G. I. Opat: Am. J. Phys. 47, 743 (1979)

    Article  ADS  Google Scholar 

  17. A. Einstein: Ann. Phys. 35, 898 (1911)

    Article  Google Scholar 

  18. R. H. Dicke: in Relativity, Groups and Topology editors C. DeWitt and B. DeWitt, Gordon and Breach, New York (1964) pp. 163–313

    Google Scholar 

  19. L. I. Schi.: Am. J. Phys. 28, 340 (1960)

    Article  ADS  Google Scholar 

  20. K. Nordvedt: Phys. Rev. D 11, 245 (1975)

    Article  ADS  Google Scholar 

  21. G. Gabrielse, S. L. Rolston, L. Haarsma, and W. Kells: Phys. Lett. A129, 38 (1988)

    ADS  Google Scholar 

  22. R. Neumann, H. Poth, A. Wolf, and A. Winnacker: Z. Phys. A313, 253 (1984)

    ADS  Google Scholar 

  23. B. I. Deutch, F. M. Jacobsen, L. H. Andersen, P. Hvelplund, H. Knudsen, M. H. Holzscheiter, M. Charlton, and G. Laricchia: Phys. Scrip. T22, 288 (1988)

    Article  ADS  Google Scholar 

  24. B. I. Deutch, L. H. Andersen, P. Hvelplund, F. M. Jacobsen, H. Knudsen, M. H. Holzscheiter, M. Charlton, and G. Laricchia: Hyperfine Interactions 44, 271 (1988)

    Article  ADS  Google Scholar 

  25. M. Charlton: Phys. Lett. A143, 143 (1990)

    ADS  Google Scholar 

  26. B. I. Deutch, M. Charlton, M. H. Holzscheiter, P. Hvelplund, L. V. Jørgensen, H. Knudsen, G. Laricchia, J. P. Merrison, and M. R. Poulsen: Hyperfine Interactions 76, 153 (1993)

    Article  ADS  Google Scholar 

  27. C. T. Munger, M. Mandelkern, J. Schultz, G. Zioulas, T. A. Armstrong, M. A. Hasan, R. A. Lewis, and G. A. Smith: Fermilab Proposal P862 (1992)

    Google Scholar 

  28. H. Dehmelt, R. Van Dyck, P. Schwinberg, and G. Gabrielse: Bull. Am. Phys. Soc. 24, 757 (1979)

    Google Scholar 

  29. T. Yamazaki, E. Widmann, R. S. Hayano, M. Iwasaki, S. N. Nakamura, K. Shigaki, F. J. Hartmann, H. Daniel, T. von Egidy, P. Hofmann, Y. S. Kim, and J. Eades; Nature 361, 238 (1993)

    Article  ADS  Google Scholar 

  30. Y. Ito, E. Widmann, and T. Yamazaki: Hyperfine Interactions 76, 163 (1993)

    Article  ADS  Google Scholar 

  31. G. Budker, and A. N. Skrinsky: Sov. Phys. Usp. 21, 278 (1978)

    Article  ADS  Google Scholar 

  32. H. A. Bethe, and E. E. Salpeter: Quantum Mechanics of One-and Two-Electron Atoms, Plenum, New York (1977)

    Google Scholar 

  33. M. Bell, and J. S. Bell: Part. Acc. 12, 49 (1982)

    Google Scholar 

  34. A. Wolf et al.: Z. Phys. D21, 69 (1991)

    ADS  Google Scholar 

  35. A. Müller, and A. Wolf: Hyperfine Interactions 109, 233 (1997)

    Article  ADS  Google Scholar 

  36. U. Schramm, J. Berger, M. Grieser, D. Habs, E. Jaeschke, G. Kilgus, D. Schwalm, A. Wolf, R. Neumann, and R. Schuch: Phys. Rev. Lett. 67; 22 (1991)

    Article  ADS  Google Scholar 

  37. M. E. Glinsky, and T. M. O’Neil: Phys. Fluids B3, 1279 (1991)

    ADS  Google Scholar 

  38. M. Pajek, and R. Schuch: Hyperfine Interactions 108, 185 (1997)

    Article  ADS  Google Scholar 

  39. M. H. Holzscheiter et al.: Phys. At. Nucl. 57, 1870 (1994)

    Google Scholar 

  40. M. H. Holzscheiter: Physica Scripta 46, 272 (1992)

    Article  ADS  Google Scholar 

  41. Y. V. Gott, M. S. Ioffe, and V. G. Tel’kovskii: Nucl. Fusion, Supplement Pt. 3, 1045 (1962)

    Google Scholar 

  42. W. Thompson, and S. Hanrahan: Jour. Vac. Sci. Tech. 14, 643 (1977)

    Article  ADS  Google Scholar 

  43. J. F. Ziegler, J. P. Biersack, and U. Littmark: The Stopping and Range of Ions in Solids, Pergamon Press, New York (1999)

    Google Scholar 

  44. GEANT3: CERN Program Library Long Writeup W5013

    Google Scholar 

  45. D. Manuzio: Tesi di Laurea Fisica; Universitá degli Studi di Genova, Facoltá di Scienze M.F.N. (2000)

    Google Scholar 

  46. W. H. Barkas, W. Birnbaum, and F. M. Smith: Phys. Rev. 101, 778 (1956)

    Article  ADS  Google Scholar 

  47. G. Gabrielse, X. Fei, L. A. Orozco, S. L. Rolston, R. L. Tjoelker, T. A. Trainor, J. Haas, H. Kalinowsky, and W. Kells; Phys. Rev. A40, 481 (1989)

    ADS  Google Scholar 

  48. T. J. Murphy, and C. M. Surko: Phys. Rev. A46, 5696 (1992) and R. G. Greaves, M. D. Tinkle, and C. M. Surko: Phys. Plasmas 1, 1439 (1994)

    ADS  Google Scholar 

  49. M. J. T. Collier, L. V. Jøergensen, Ol. Meshkov, D. P. van der Werf, and M. Charlton: in Non-Neutral Plasmas III (AIP Conference Proceedings 498), eds. J. J. Bollinger, R. L. Spencer, and R. C. Davidson (1999), pp. 13–18

    Google Scholar 

  50. F. Sauli: Instrumentation in High Energy Physics World Scientific (1992)

    Google Scholar 

  51. D. E. Pritchard: Phys. Rev. Lett. 51, 1336 (1983)

    Article  ADS  Google Scholar 

  52. J. M. Doyle, J. C. Sandberg, I. A. Yu, D. Kleppner, and T. J. Greytak: Phys Rev Lett 67, 603 (1991)

    Article  ADS  Google Scholar 

  53. I. Setija, H. Werij, O. Luiten, M. Reynolds, T. Hijmans, and J. Walraven: Phys. Rev. Lett. 70, 2257 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amsler, C. et al. (2001). Antihydrogen Production and Precision Spectroscopy with ATHENA/AD-1. In: Karshenboim, S.G., Bassani, F., Pavone, F., Inguscio, M., Hänsch, T. (eds) The Hydrogen Atom. Lecture Notes in Physics, vol 570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45395-4_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-45395-4_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41935-8

  • Online ISBN: 978-3-540-45395-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics