Advertisement

Towards a Measurement of the Lamb Shift in Muonic Hydrogen

  • R. Pohl
  • F. Biraben
  • C.A.N. Conde
  • C. Donche-Gay
  • T. W. Hänsch
  • F. J. Hartmann
  • P. Hauser
  • V. W. Hughes
  • O. Huot
  • P. Indelicato
  • P. Knowles
  • F. Kottmann
  • Y. -W. Liu
  • V. E. Markushin
  • F. Mulhauser
  • F. Nez
  • C. Petitjean
  • P. Rabinowitz
  • J. M. F. dos Santos
  • L. A. Schaller
  • H. Schneuwly
  • W. Schott
  • D. Taqqu
  • J. F. C. A. Veloso
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 570)

Abstract

The availability of long-lived metastable muonic hydrogen atoms (μp) in the 2S state has been investigated in a recent series of experiments at PSI. From the low-energy part of the initial kinetic energy distribution of μp(1S) we determined the fraction of long-lived μp(2S) to be ~ 1.5% for pressures between 1 and 64 hPa. Another analysis involving μp(1S) with a kinetic energy of ~ 1 keV originating from quenching of thermalized μp(2S) via the resonant process \( \mu p\left( {2S} \right) + {\text{H}}_{\text{2}} \to \left\{ {\left[ {\left( {pp\mu } \right)^ + } \right]^* pee} \right\}^* \to \mu p\left( {1S} \right) + p + ... + 2 \) keV gives the same result. This is the first direct observation of long-lived μp(2S) atoms.

We are preparing a measurement of the 2S Lamb shift in muonic hydrogen, which will improve the uncertainty on the RMS proton charge radius by more than one order of magnitude. Technical aspects of our experiment are presented, including a new low-energy negative muon beam, an efficient low-energy muon entrance detector, a randomly triggered 3-stage laser system providing 0.5 mJ, 7 ns laser pulses at 6.02 μm wavelength, and a large solid angle xenon gas-proportional-scintillation-chamber (GPSC) read out by a microstrip-gas-chamber (MSGC) with a CsI-coated surface for the detection of 2 keV X-rays.

Keywords

Lamb Shift Muon Beam Muonic Hydrogen Raman Cell Proton Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Lamb, Jr. and R. C. Retherford: Phys. Rev. 72, 241 (1947)CrossRefADSGoogle Scholar
  2. 2.
    S. Bourzeix et al.: Phys. Rev. Lett. 76, 384 (1996)CrossRefADSGoogle Scholar
  3. 3.
    Th. Udem et al.: Phys. Rev. Lett. 79, 2646 (1998)CrossRefADSGoogle Scholar
  4. 4.
    C. Schwob et al.: Phys. Rev. Lett. 82, 4960 (1999)CrossRefADSGoogle Scholar
  5. 5.
    L.N. Hand: Rev. Mod. Phys. 35, 335 (1963)CrossRefADSGoogle Scholar
  6. 6.
    G.G. Simon et al.: Nucl. Phys. A 333, 381 (1980)ADSGoogle Scholar
  7. 7.
    C.W. Wong: Int. J. Mod. Phys. 3, 821 (1994)ADSGoogle Scholar
  8. 8.
    P. Mergell et al.: Nucl. Phys. A 596, 367 (1996)ADSGoogle Scholar
  9. 9.
    R. Rosenfelder: Phys. Lett. B 479, 318 (2000)Google Scholar
  10. 10.
    S. G. Karshenboim: Can. J. Phys. 77, 241 (1999)CrossRefADSGoogle Scholar
  11. 11.
    K. Pachucki: Phys. Rev. A 53, 2092 (1996)ADSGoogle Scholar
  12. 12.
    T. Kinoshita and M. Nio: Phys. Rev. Lett. 82, 3240 (1999)CrossRefADSGoogle Scholar
  13. 13.
    K. Pachucki: Phys. Rev. A 60, 3593 (1999)ADSGoogle Scholar
  14. 14.
    J.L. Friar et al.: Phys. Rev. A 59, 4061 (1999)ADSGoogle Scholar
  15. 15.
    H. Anderhub et al.: Phys. Lett. 71 B, 443 (1977)ADSGoogle Scholar
  16. 16.
    H. Anderhub et al.: Phys. Lett. 143 B, 65 (1984)ADSGoogle Scholar
  17. 17.
    P.O. Egan et al.: Phys. Rev. A 23, 1152 (1981)ADSGoogle Scholar
  18. 18.
    G. Carboni and G. Fiorentini: Nuov. Cim. 39 B, 281 (1977)ADSGoogle Scholar
  19. 19.
    T. Jensen and V. Markushin: PSI-PR-99-32, nucl-th/0001009Google Scholar
  20. 20.
    M. Mühlbauer et al.: Hyperfine Interact. 119, 305 (1999)CrossRefADSGoogle Scholar
  21. 21.
    A. Adamczaket al.: At. Data and Nucl. Data Tables 62, 255 (1996)CrossRefADSGoogle Scholar
  22. 22.
    J.S. Cohen: Phys. Rev. A 43, 4668 (1991) and private communicationADSGoogle Scholar
  23. 23.
    J. Böcklin: PhD thesis ETH 7161 (1982), unpublishedGoogle Scholar
  24. 24.
    P. Froelich and A. Flores-Riveros: Phys. Rev. Lett. 70, 1595 (1993)CrossRefADSGoogle Scholar
  25. 25.
    S. Hara, T. Ishihara: Phys. Rev. A 40, 4232 (1989)ADSGoogle Scholar
  26. 26.
    I. Shimamura: Phys. Rev. A 40, 4863 (1989)ADSGoogle Scholar
  27. 27.
    P. Froelich, J. Wallenius: Phys. Rev. Lett. 75, 2108 (1995)CrossRefADSGoogle Scholar
  28. 28.
    J. Wallenius, P. Froelich: Phys. Rev. A 54, 1171 (1996)ADSGoogle Scholar
  29. 29.
    S. Jonsell, J. Wallenius, P. Froelich: Phys. Rev. A 59, 3440 (1999)ADSGoogle Scholar
  30. 30.
    PSI, Annual Report, General Volume, 32 (1997)Google Scholar
  31. 31.
    P. de Cecco et al.: Nucl. Instrum. Methods A 394, 287 (1997)ADSGoogle Scholar
  32. 32.
    J. Böcklin et al.: Nucl. Instrum. Methods 176, 105 (1980)CrossRefADSGoogle Scholar
  33. 33.
    H. P. von Arb et al.: Nucl. Instrum. Methods 207, 429 (1983)CrossRefGoogle Scholar
  34. 34.
    J.F.C.A. Veloso and J.M.F. dos Santos, and C.A.N. Conde: Nucl. Instrum. Methods A 422, 273 (1999)ADSGoogle Scholar
  35. 35.
    J.F.C.A. Veloso and J.M.F. dos Santos, and C.A.N. Conde: IEEE Trans. Nucl. Sci. 44, 73 (1997)Google Scholar
  36. 36.
    R. Rosenfelder: Phys. Lett. B 463, 317 (1999)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • R. Pohl
    • 1
    • 2
  • F. Biraben
    • 3
  • C.A.N. Conde
    • 4
  • C. Donche-Gay
    • 5
  • T. W. Hänsch
    • 6
  • F. J. Hartmann
    • 7
  • P. Hauser
    • 1
  • V. W. Hughes
    • 8
  • O. Huot
    • 5
  • P. Indelicato
    • 3
  • P. Knowles
    • 5
  • F. Kottmann
    • 2
  • Y. -W. Liu
    • 8
    • 1
  • V. E. Markushin
    • 1
  • F. Mulhauser
    • 5
  • F. Nez
    • 3
  • C. Petitjean
    • 1
  • P. Rabinowitz
    • 9
  • J. M. F. dos Santos
    • 4
  • L. A. Schaller
    • 5
  • H. Schneuwly
    • 5
  • W. Schott
    • 7
  • D. Taqqu
    • 1
  • J. F. C. A. Veloso
    • 4
  1. 1.Paul Scherrer InstituteVilligen PSISwitzerland
  2. 2.Institut für TeilchenphysikETHZZürichSwitzerland
  3. 3.Laboratoire Kastler BrosselParis CEDEX 05France
  4. 4.Departamento de FisicaUniversidade de CoimbraCoimbraPortugal
  5. 5.Institut de Physique de l’UniversitéFribourgSwitzerland
  6. 6.Max-Planck-Institut für QuantenoptikGarchingGermany
  7. 7.Physik-DepartmentTechnische Universität MünchenGarchingGermany
  8. 8.Physics DepartmentYale UniversityNew HavenUSA
  9. 9.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations