Advertisement

Time-of-Flight Spectroscopy of Muonic Hydrogen Atoms and Molecules

  • M. C. Fujiwara
  • A. Adamczak
  • J. M. Bailey
  • G. A. Beer
  • J. L. Beveridge
  • M. P. Faifman
  • T. M. Huber
  • P. Kammel
  • S. K. Kim
  • P. E. Knowles
  • A. R. Kunselman
  • V. E. Markushin
  • G. M. Marshall
  • G. R. Mason
  • F. Mulhauser
  • A. Olin
  • C. Petitjean
  • T. A. Porcelli
  • J. Zmeskal
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 570)

Abstract

Studies of muonic hydrogen atoms and molecules have been performed traditionally in bulk targets of gas, liquid or solid. At TRIUMF, Canada’s meson facility, we have developed a new type of target system using multilayer thin films of solid hydrogen, which provides a beam of muonic hydrogen atoms in vacuum. Using the time-of-flight of the muonic atoms, the energy-dependent information of muonic reactions are obtained in direct manner. We discuss some unique measurements enabled by the new technique, with emphasis on processes relevant to muon catalyzed fusion.

Keywords

Monte Carlo Hydrogen Isotope Muonic Atom Solid Hydrogen Fusion Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for example: T. Yamazaki: this edition, pp. 246–265; K. Jungmann: this edition, pp. 81-102; E. Widmann et al.: this edition, pp. 528-542; R. Pohl et al.: this edition, pp. 454-466Google Scholar
  2. 2.
    G.M. Marshall et al.: Z. Phys. C 56, S44 (1992)CrossRefGoogle Scholar
  3. 3.
    G.M. Marshall et al.: Hyperfine Interact. 82, 529 (1993)CrossRefADSGoogle Scholar
  4. 4.
    G.M. Marshall et al.: Hyperfine Interact. 101/102, 47 (1996)CrossRefADSGoogle Scholar
  5. 5.
    G.M. Marshall et al.: Hyperfine Interact. 118, 89 (1999)CrossRefADSGoogle Scholar
  6. 6.
    For reviews see: W. H. Breunlich et al.: Ann. Rev. Nucl. Part. Sci. 39, 311 (1989); L. I. Ponomarev: Contemp. Phys. 31, 219 (1990); P. Froelich: Adv. Phys. 41, 405 (1992); J.S. Cohen: in Review of Fundamental Processes and Applications of Atoms and Ions, ed. by C.D. Lin (World Scientific, Singapore, 1993) pp. 61-110Google Scholar
  7. 7.
    M.P. Faifman, L.I. Men’shikov, and T.A. Strizh: Muon Catalyzed Fusion 4, 1 (1989)Google Scholar
  8. 8.
    M.P. Faifman and L.I. Ponomarev: Phys. Lett. 265B, 201 (1991)ADSGoogle Scholar
  9. 9.
    M.P. Faifman et al.: Hyperfine Interact. 101/102, 179 (1996)CrossRefADSGoogle Scholar
  10. 10.
    Yu. V. Petrov et al.: Phys. Lett. 331B, 226 (1994)ADSGoogle Scholar
  11. 11.
    Yu. V. Petrov et al.: Phys. Lett. 378B, 1 (1996)ADSGoogle Scholar
  12. 12.
    C. Chiccoli et al.: Muon Catalyzed Fusion, 7, 87 (1992)MathSciNetGoogle Scholar
  13. 13.
    P.E. Knowles et al.: Nucl. Instrum. Methods A 368, 604 (1996)CrossRefADSGoogle Scholar
  14. 14.
    P.E. Knowles et al.: Hyperfine Interact. 82, 521 (1993)CrossRefADSGoogle Scholar
  15. 15.
    M.C. Fujiwara et al.: Hyperfine Interact. 106, 257 (1997)CrossRefADSGoogle Scholar
  16. 16.
    V.E. Markushin: Hyperfine Interact. 101/102, 155 (1996)CrossRefADSGoogle Scholar
  17. 17.
    F. Mulhauser et al.: Phys. Rev. A 53, 3069 (1996)CrossRefADSGoogle Scholar
  18. 18.
    L. Bracci et al.: Muon Catalyzed Fusion 4, 247 (1989)Google Scholar
  19. 19.
    M.C. Fujiwara et al.: Hyperfine Interact. 118, 151 (1999)CrossRefADSGoogle Scholar
  20. 20.
    F. Mulhauser et al.: Hyperfine Interact. 119, 35 (1999)CrossRefADSGoogle Scholar
  21. 21.
    B. Forster et al.: Hyperfine Interact. 65, 1007 (1990)CrossRefADSGoogle Scholar
  22. 22.
    R. Jacot-Guillarmod et al.: Hyperfine Interact. 101/102, 239 (1996)CrossRefADSGoogle Scholar
  23. 23.
    P. E. Knowles et al.: Phys. Rev. A 56, 1970 (1997) [Err.: 57, 3136 (1998)]CrossRefADSGoogle Scholar
  24. 24.
    A. Olin et al.: Hyperfine Interatct. 118, 163 (1999)CrossRefADSGoogle Scholar
  25. 25.
    J. Wozniak et al.: Hyperfine Interact. 119, 63 (1999)CrossRefADSGoogle Scholar
  26. 26.
    A. Adamczak: Hyperfine Interact. 119, 23 (1999)CrossRefADSGoogle Scholar
  27. 27.
    M.C. Fujiwara et al.: Nucl. Instrum. Methods A 395, 159 (1997)CrossRefADSGoogle Scholar
  28. 28.
    M.C. Fujiwara et al.: Hyperfine Interact. 101/102, 641 (1996)CrossRefADSGoogle Scholar
  29. 29.
    M.C. Fujiwara: Ph.D. thesis, University of British Columbia, Canada (1999)Google Scholar
  30. 30.
    M.C. Fujiwara et al.: Phys. Rev. Lett. 85 1642 (2000)CrossRefADSGoogle Scholar
  31. 31.
    See for exampl: Yu.P. Averin et al.: Hyperfine Interact. 118, 121 (1999)CrossRefADSGoogle Scholar
  32. 32.
    T.A. Porcellli et al.: to be publishedGoogle Scholar
  33. 33.
    C. Petitjean et al.: Hyperfine Interact. 82, 273 (1993)CrossRefADSGoogle Scholar
  34. 34.
    K. Ishida et al.: Hyprefine Interact. 118 203 (1999)CrossRefADSGoogle Scholar
  35. 35.
    S.S. Gershtein et al.: Sov. Phys. JETP 53, 872 (1981); L.N. Bodganova et al.: Nucl. Phys. A 454, 653 (1986)Google Scholar
  36. 36.
    C.Y. Hu et al.: Phys. Rev. A 49, 4481 (1994); V. Melezhik: Hyperfine Interact. 101/102, 365 (1996); M. Kamimura et al.: 119, 217 (1999)CrossRefADSGoogle Scholar
  37. 37.
    M.C. Fujiwara et al.: Hyperfine Interact. 101/102, 613 (1996)CrossRefADSGoogle Scholar
  38. 38.
    M.C. Fujiwara et al.: TRIUMF E767 Research ProposalGoogle Scholar
  39. 40.
    M.C. Fujiwara et al.: in [39], to be publishedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • M. C. Fujiwara
    • 1
    • 2
  • A. Adamczak
    • 3
  • J. M. Bailey
    • 4
  • G. A. Beer
    • 5
  • J. L. Beveridge
    • 6
  • M. P. Faifman
    • 7
  • T. M. Huber
    • 8
  • P. Kammel
    • 9
  • S. K. Kim
    • 10
  • P. E. Knowles
    • 11
  • A. R. Kunselman
    • 12
  • V. E. Markushin
    • 13
  • G. M. Marshall
    • 6
  • G. R. Mason
    • 5
  • F. Mulhauser
    • 11
  • A. Olin
    • 6
  • C. Petitjean
    • 13
  • T. A. Porcelli
    • 14
  • J. Zmeskal
    • 15
  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Physics, Faculty of ScienceUniversity of TokyoHongo, TokyoJapan
  3. 3.Institute of Nuclear PhysicsKrakowPoland
  4. 4.Chester TechnologyChesterEngland, UK
  5. 5.Department of Physics and AstronomyUniversity of VictoriaVictoriaCanada
  6. 6.TRIUMFVancouverCanada
  7. 7.Russian Research CenterKurchatov InstituteMoscowRussia
  8. 8.Department of PhysicsGustavus Adolphus CollegeSt. PeterUSA
  9. 9.Department of Physics and Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA
  10. 10.Department of PhysicsJeonbuk National UniversityJeonju CityS. Korea
  11. 11.Institute of PhysicsUniversity of FribourgFribourgSwitzerland
  12. 12.Department of Physics and AstronomyUniversity of WyomingLaramieUSA
  13. 13.Paul Scherrer InstituteVilligenSwitzerland
  14. 14.Department of PhysicsUniversity of Northern British ColumbiaPrince GeorgeCanada
  15. 15.Institute for Medium Energy PhysicsAustrian Academy of SciencesViennaAustria

Personalised recommendations