Advertisement

Highly Accurate Theoretical Simulation of the Resonant Multiphoton Ionization Processes With Simplest Atoms

  • Victor Yakhontov
  • Klaus Jungmann
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 570)

Abstract

We present an advanced theoretical approach enabling highly accurate studies of a wide class of resonant 2 + 1 photoionization processes involving hydrogeic levels to be carried out. AC-Stark shifts, non-zero ionization rates of all states involved are naturally incorporated into the theoretical setup developed, together with spatial and temporal inhomogeneities of the laser signal, fine structure contributions, as well as second order Doppler shifts. In contrast with the usual perturbative technique, the time evolution of the atomic states is described by direct numerically solving a coupled system of time-dependent differential relativisitic equations. Particular numerical simulations have been carried out to model two-step 3-photon ionization process in muonium, \( 1S\xrightarrow{{2\hbar \omega }}2S\xrightarrow{{\hbar \omega }}\varepsilon P \) , induced by a CW laser signal of high intensity.

Keywords

Laser Frequency Ionization Probability Muonium Atom Laser Signal Theoretical Setup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Nez, M.D. Plimmer and S. Bourzeix et al.: Europhys. Lett. 24, 635 (1993)CrossRefADSGoogle Scholar
  2. 2.
    S. Bourzeix et al.: Phys. Rev. Lett. 76, 384 (1996)CrossRefADSGoogle Scholar
  3. 3.
    D. Berkeland, M.D. Boshier and E. Hinds: Phys. Rev. Lett. 75, 2470 (1995)CrossRefADSGoogle Scholar
  4. 4.
    F. Schmidt-Kaler, D. Leibfried, S. Seel et al.: Phys. Rev. A 51 2789 (1995)CrossRefADSGoogle Scholar
  5. 5.
    Th. Udem, A. Huber, B. Gross et al.: Phys. Rev. Lett. 79, 2646 (1997)CrossRefADSGoogle Scholar
  6. 6.
    M. Niering, R. Holzwarth, J. Reichert et al.: Phys. Rev. Lett. (2000) in pressGoogle Scholar
  7. 7.
    A. Huber, Th. Udem, B. Gross et al.: Phys. Rev. Lett., 80, 468 (1998)CrossRefADSGoogle Scholar
  8. 8.
    M.S. Fee, S. Chu, A.P. Mills et al.: Phys. Rev. A 48, 192 (1993)CrossRefADSGoogle Scholar
  9. 9.
    A.P. Mills, Jr.: Hyperfine Interactions 76, 233 (1993)CrossRefADSGoogle Scholar
  10. 10.
    F.E. Maas, B. Braun, H. Geerds et al.: Phys. Lett. A187, 247 (1994)ADSGoogle Scholar
  11. 11.
    K. Jungmann: Physikalische Blätter 51, 1167 (1995)Google Scholar
  12. 12.
    G. zu Putlitz: Hyperfine Interactions 103, 103 (1996)CrossRefGoogle Scholar
  13. 13.
    M.G. Boshier, V.W. Hughes, K. Jungmann and G. zu Putlitz: Comments Atom. Mol. Phys. 33, 17 (1996)Google Scholar
  14. 14.
    V. Meyer, S.N. Bagaev, P.E.G. Baird et al.: Phys. Rev. Lett. 84, 1136 (2000)CrossRefADSGoogle Scholar
  15. 15.
    K. Jungmann: this edition, pp. 81–102Google Scholar
  16. 16.
    K.S. Eikema, U. Ubachs, W. Vassen and W. Hogervorst: Phys. Rev. A 55 1866 (1997); Phys. Rev. Lett. 71, 1690 (1997)CrossRefADSGoogle Scholar
  17. 17.
    P. J. Mohr and B. N. Taylor: Rev.Mod. Phys. 72, 351 (2000); see also P. Mohr and B. N. Taylor: this edition, pp. 145-156CrossRefADSGoogle Scholar
  18. 18.
    V. Meyer et al., Hyperfine Interactions 127, 197 (2000)CrossRefADSGoogle Scholar
  19. 19.
    V. Yakhontov, R. Santra and K. Jungmann: J. Phys. B: Atom. Mol. Opt. Phys. 32 1615 (1999)CrossRefADSGoogle Scholar
  20. 20.
    V.S. Letokhov and V.P. Chebotaev: Nonlinear Laser Spectroscopy, Springer Series in Optical Sciences (Springer, Berlin, Heidelberg, New York 1977)Google Scholar
  21. 21.
    E. Giacobino and B. Cagnac. In: Progress in Optics XVII ed. by E. Wolf (Amsterdam, North-Holland 1980) pp. 86–161Google Scholar
  22. 22.
    I. Reinhard, M. Gabrysch, B. Fischer von Weikerstahl et al.: Applied Physics B 63 467 (1996)Google Scholar
  23. 23.
    P. Bakule et al.: Appl. Phys. B71, 11 (2000)ADSGoogle Scholar
  24. 24.
    N.B. Delone and V.P. Krainov: Multiphoton Processes in Atoms (Berlin: Springer 1994)Google Scholar
  25. 25.
    L.P. Rapoport, B.A. Zon and N.L. Manakov: Theory of Multiphoton Processes in Atoms (Atomizdat, Moscow 1978) (in Russian)Google Scholar
  26. 26.
    B.A. Zon: Opt. Spectrosc. 36 838 (1974)Google Scholar
  27. 27.
    B.A. Zon and B.G. Katsnel’son: Sov. Phys. JETP 65, 947 (1973)Google Scholar
  28. 28.
    B.A. Zon, N.L. Manakov and L.P. Rappoport: Opt. Spectrosc. 38 6 (1975)ADSGoogle Scholar
  29. 29.
    F. Bassani, J.J. Forney and A. Quattropani: Phys. Rev. Lett. 39, 1070 (1977)CrossRefADSGoogle Scholar
  30. 30.
    B. Cagnac, M.D. Plimmer, L. Julien, and F. Biraben: Rep. Prog. Phys., 57, 853 (1994)CrossRefADSGoogle Scholar
  31. 31.
    G.R. Beausoleil and T.W. Hänsch: Phys. Rev., A 33, 1661 (1986)CrossRefADSGoogle Scholar
  32. 32.
    C. Cohen-Tannoudji, J. Dudpont-Roc, G. Grynberg: Atom-photon interactions: basic processes and applications Vol. 2 (Weiley Interscience, New York 1998)Google Scholar
  33. 33.
    M. D. Levinson: Introduction to Nonlinear Spectroscopy (Academic, New York, 1982)Google Scholar
  34. 34.
    V.B. Berestetskii, E.M. Lifshitz and L.P. Pitaevskii: Quantum Electrodynamics. Landau and Lifshitz Course of Theoretical Physics, Vol.4, 2nd edn. (Oxford, Butterworth-Heinemann, 1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Victor Yakhontov
    • 1
  • Klaus Jungmann
    • 2
  1. 1.Institut für Physikalische ChemieBaselSwitzerland
  2. 2.Physikalisches InstitutHeidelbergGermany

Personalised recommendations