Advertisement

Antiprotonic Helium — An Exotic Hydrogenic Atom

  • Toshimitsu Yamazaki
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 570)

Abstract

The antiprotonic helium,\( \overline {\text{p}} {\text{e}}{\text{He}}^{\text{2}} + \left( { = \overline {\text{p}} {\text{He}}^{\text{ + }} } \right) \) , is a peculiar metastable atom, interfacing between matter and antimatter. A series of metastable states are composed of the He nucleus, one electron in the ground 1s configuration and one antiproton orbiting with large quantum numbers (n, l), where \( n \sim l \sim \sqrt {{{M_{\overline p }^ * } \mathord{\left/ {\vphantom {{M_{\overline p }^ * } {m_e }}} \right. \kern-\nulldelimiterspace} {m_e }}} \sim 38 \) . They possess a dual character as an exotic atom and an exotic diatomic molecule, and is often called antiprotonic helium atom-molecule, or for short, atomcule. From the chemical physics point of view the \( \overline p He^ + \) may be regarded as an exotic neutral hydrogen atom with a composite “pseudo proton” with various effective charges, binding energies and spatial distributions. Since its discovery in 1991 at KEK comprehensive experimental studies have been carried out at CERN. In particular, the laser resonance spectroscopy of \( \overline p He^ + \) has yielded the following results. 1) Precise determination of the transition energies to the precision of ppm. When compared with advanced theoretical predictions of the binding energies of this Coulomb 3-body system including the relativistic effects and QED corrections, the mass and charge of p have been determined with ppm precision. 2) Hyperfine structure of \( \overline p He^ + \) due to the coupling of the electron spin with the large orbital magnetic moment of \( \overline p \) has been revealed experimentally. 3) The dependence of the lifetimes of the individual (n, l) states of \( \overline p He^ + \) on the He medium density, foreign atoms and molecules has been studied with the laser tagging method.

Keywords

Metastable State Helium Atom Laser Resonance Lamb Shift Quench Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Iwasaki et al.: Phys. Rev. Lett. 67, 1246 (1991)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    T. Yamazaki et al.: Nature 361, 238 (1993)CrossRefADSGoogle Scholar
  3. 3.
    G.T. Condo: Phys. Lett. 9, 65 (1964)CrossRefADSGoogle Scholar
  4. 4.
    J.E. Russell: Phys. Rev. Lett. 23, 63 (1969); Phys. Rev. 188, 187 (1969)CrossRefADSGoogle Scholar
  5. 5.
    T. Yamazaki and K. Ohtsuki: Phys. Rev. A 45, 7782 (1992)CrossRefADSGoogle Scholar
  6. 6.
    I. Shimamura: Phys. Rev. A 46, 3776 (1992)CrossRefADSGoogle Scholar
  7. 7.
    V.I. Korobov: Phys. Rev. A 54, R1749 (1996)CrossRefADSGoogle Scholar
  8. 8.
    Y. Kino, M. Kamimura and H. Kudo: Nucl. Phys. A 631, 649c (1998)CrossRefADSGoogle Scholar
  9. 9.
    N. Elander and E. Yarevsky: Phys. Rev. A 56, 1855 (1997); A 58, 2256(E) (1998)CrossRefADSGoogle Scholar
  10. 10.
    N. Morita, K. Ohtsuki and T. Yamazaki: Nucl. Instr. Meth. A 330, 439 (1993)CrossRefADSGoogle Scholar
  11. 11.
    N. Morita et al.: Phys. Rev. Lett. 72, 1180( 1994)CrossRefADSGoogle Scholar
  12. 12.
    R.S. Hayano et al.: Phys. Rev. Lett. 73, 1485 (1994)CrossRefADSGoogle Scholar
  13. 13.
    F. Maas et al.: Phys. Rev. A 52, 4266 (1995)CrossRefADSGoogle Scholar
  14. 14.
    G. Ya. Korenman: Hyperfine Interactions 101/102, 81 (1996), ibid., 463CrossRefADSGoogle Scholar
  15. 15.
    T. Yamazaki et al.: Phys. Rev. A 55, R3295 (1997)CrossRefADSGoogle Scholar
  16. 16.
    E. Widmann et al.: Phys. Lett. B 404, 15 (1997)CrossRefADSGoogle Scholar
  17. 17.
    V.I. Korobov and D. Bakalov: Phys. Rev. Lett. 79, 3379 (1997)CrossRefADSGoogle Scholar
  18. 18.
    H.A. Torii et al.: Phys. Rev. A 59, 223 (1998)CrossRefADSGoogle Scholar
  19. 19.
    V.I. Korobov: Hyperfine Interactions 119, 185 (1999)CrossRefADSGoogle Scholar
  20. 20.
    Y. Kino, M. Kamimura and H. Kudo: Hyperfine Interactions 119, 201 (1999)CrossRefADSGoogle Scholar
  21. 21.
    V.I. Korobov: this edition, pp. 517–520Google Scholar
  22. 22.
    G. Gabrielse et al.: Phys. Rev. Lett. 82, 3198 (1999)CrossRefADSGoogle Scholar
  23. 23.
    R. Hughes and B.I. Deutsch: Phys. Rev. Lett. 69, 578 (1992)CrossRefADSGoogle Scholar
  24. 24.
    E. Widmann et al.: Phys. Rev. A 51, 2870( 1995)CrossRefADSGoogle Scholar
  25. 25.
    E. Widmann et al.: Phys. Rev. A 53, 3129 (1996)CrossRefADSGoogle Scholar
  26. 26.
    M. Hori et al.: Phys. Rev. A 57, 1698 (1998)CrossRefADSGoogle Scholar
  27. 27.
    V.I. Korobov and I. Shimamura: Phys. Rev. A 56, 4587 (1997)CrossRefADSGoogle Scholar
  28. 28.
    D. Bakalov, B. Jeziorski, T. Korona, K. Szalewicz and E. Tchaukova: Phys. Rev. Lett. 84, 2350 (2000)CrossRefADSGoogle Scholar
  29. 29.
    T. Yamazaki et al.: Chem. Phys. Lett. 265, 137 (1997)CrossRefADSGoogle Scholar
  30. 30.
    R. Pohl et al.: Phys. Rev. A 58, 4406 (1998)CrossRefADSGoogle Scholar
  31. 31.
    B. Ketzer et al.: Phys. Rev. Lett. 78, 1671 (1997)CrossRefADSGoogle Scholar
  32. 32.
    B. Ketzer et al.: J. Chem. Phys. 109, 424 (1998)CrossRefADSGoogle Scholar
  33. 33.
    D. Bakalov and V.I. Korobov: Phys. Rev. A 57, 1662 (1998)CrossRefADSGoogle Scholar
  34. 34.
    H.A. Bethe and E.E. Salpeter: Quantum mechanics of one-and two-electron atoms, Springer, Berlin, 1957zbMATHGoogle Scholar
  35. 35.
    A. Kreissl: Z. Phys. C 37, 557 (1988)CrossRefADSGoogle Scholar
  36. 36.
    T. Azuma et al., Asacusa Experimental Proposal (1997), CERN/SPSC 97-19Google Scholar
  37. 37.
    O.I. Tolstikhin, S. Watanabe and M. Matsuzawa: Phys. Rev. A 54, R3705 (1996)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Toshimitsu Yamazaki
    • 1
  1. 1.RI Beam Science LaboratoryRIKENWako-shiJapan

Personalised recommendations