Introduction to Simple Atoms

  • Savely G. Karshenboim
  • Francesco S. Pavone
Part of the Lecture Notes in Physics book series (LNP, volume 570)


It is really hard to overestimate the role which studies of hydrogen have played in establishing modern physics. Regularities in the spectrum of atomic hydrogen (known now as Lyman, Balmer, Paschen and Bracket series) inspired the appearance of Bohr’s theory of the atom and the so-called old quantum mechanics. This model explained general features of hydrogen physics but not in full detail. A crucial success of the Schödinger theory was a calculation of the secondand the third-order terms of the perturbative expansion for the Stark effect in the hydrogen atom [1]. The non-relativistic theory was still not perfect and in particular it was not capable of dealing with the fine structure of hydrogenic lines. The problem was resolved with the discovery of the Dirac equation, which explained the fine structure and also a specific value for the spin component of the magnetic moment of the electron (g = 2). Some historical overview can be found in Ref. [2],[3].


Fundamental Constant Lamb Shift Muonic Atom Exotic Atom Fundamental Physical Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. A. Bethe and E. E. Salpeter: Quantum Mechanics of One-and Two-electon Atoms (Plenum, NY, 1977)Google Scholar
  2. 2.
    G.W. Series: The Spectrum of Atomic Hydrogen: Advances (World Sci., Singapore, 1988)Google Scholar
  3. 3.
    G. W. Series: in [5], pp. 2–15Google Scholar
  4. 4.
    S. S. Schweber: QED and the Men Who Made It (Princeton Univ Pr. 1994)Google Scholar
  5. 6.
    F. Biraben, T. W. Hänsch et al.: this book, pp. 17–41Google Scholar
  6. 7.
    L. Willmann and D. Kleppner: this book, pp. 42–56Google Scholar
  7. 8.
    Th. Udem et al.: this book, pp. 125–144Google Scholar
  8. 9.
    S. G. Karshenboim: Can. J. Phys. 77, 241 (1999)CrossRefADSGoogle Scholar
  9. 10.
    F. S. Pavone: Phys. Scripta T58, 16 (1995)CrossRefADSGoogle Scholar
  10. 11.
    S. G. Karshenboim: invited talk at ICAP 2000, to be published, e-print hepph/0007278; invited talk at MPLP 2000, to be published, e-print physics/0008215Google Scholar
  11. 12.
    K.-P. Jungmann: this book, pp. 81–102Google Scholar
  12. 13.
    R. Conti et al.: this book, pp. 103–121Google Scholar
  13. 14.
    R. Pohl et al.: this edition, pp. 454–466Google Scholar
  14. 15.
    K. Jungmann: Z. Phys. C 56, S59 (1992); M. G. Boshier et al.: Comm. At. Mol. Phys. 33, 17 (1996)CrossRefGoogle Scholar
  15. 16.
    D. Bakalov et al.: Phys. Lett. A 172, 277 (1993)CrossRefGoogle Scholar
  16. 17.
    G. Adkins: this edition, pp. 375–386Google Scholar
  17. 18.
    K. Pachucki and S. G. Karshenboim: Phys. Rev. Lett. 70, 2101 (1998); Phys. Rev. A 60, 2792 (1999)CrossRefADSGoogle Scholar
  18. 19.
    A. H. Hoang et al.: Phys. Rev. Lett. 79, 3383 (1997)CrossRefADSGoogle Scholar
  19. 20.
    A. Czarnecki et al.: this edition, pp. 387–396Google Scholar
  20. 21.
    S. G. Karshenboim: this edition, pp. 335–343Google Scholar
  21. 22.
    S. G. Karshenboim: Z. Phys. D 39, 109 (1997).Google Scholar
  22. 23.
    G. Drake: this book, pp. 57–78Google Scholar
  23. 24.
    P. Cancio et al.: in Atomic Physica 16, ed. by W. E. Baylis and G. W. F. Drake (AIP, Woodbary, NY, 1999) pp. 42–57Google Scholar
  24. 25.
    F. Marin et al.: Z. Phys. D 32, 285 (1995)ADSGoogle Scholar
  25. 26.
    E. G. Myers: this book, pp. 179–203Google Scholar
  26. 27.
    G. Werth et al.: this book, pp. 204–220Google Scholar
  27. 28.
    U. D. Jentschura, P. J. Mohr and G. So.: Phys. R ev. Lett. 82, 53 (1999)CrossRefADSGoogle Scholar
  28. 29.
    K. Melnikov and T. van Ritbergen: this edition, pp. 344–351Google Scholar
  29. 30.
    K. Pachucki: Phys. R ev. Lett. 72, 3154 (1994); M.I. Eides and V.A. Shelyuto: JETP Lett. 61, 478 (1995); Phys. Rev. A 52, 954 (1995)CrossRefADSGoogle Scholar
  30. 31.
    M. I. Eides, H. Grotch and V. A. Shelyuto: Phys. Rep. 342 (2001) to be published Google Scholar
  31. 32.
    S. G. Karshenboim, JETP 76, 541 (1993)ADSGoogle Scholar
  32. 33.
    S. Mallampalli and J. Sapirstein: Phys. Rev. Lett. 80, 5297 (1998); I. Goidenko et al.: this edition, pp. 619-636; V. A. Yerokhin: this edition, pp. 800-809CrossRefADSGoogle Scholar
  33. 34.
    W. E. Caswell and G. P. Lepage: Phys. Rev. A 20, 36 (1979)CrossRefADSGoogle Scholar
  34. 35.
    L. Nemenov: this book, pp. 223–245Google Scholar
  35. 36.
    T. Yamazaki: this book, pp. 246–265Google Scholar
  36. 37.
    V. A. Dzuba et al.: this edition, pp. 564–575Google Scholar
  37. 38.
    S. G. Karshenboim: Can. J. Phys. 78, 639 (2000); e-print physics/0008051CrossRefADSGoogle Scholar
  38. 39.
    P. Mohr and B. N. Taylor: this book, pp. 145–156Google Scholar
  39. 40.
    T. Kinoshita: this book, pp. 157–175Google Scholar
  40. 41.
    S. Chu: invited talk at ICAP 2000, to be published; D. Pritchard: invited talk at ICAP 2000, to be published Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Savely G. Karshenboim
    • 1
    • 2
  • Francesco S. Pavone
    • 3
    • 4
  1. 1.D. I. Mendeleev Institute for Metrology (VNIIM)St. PetersburgRussia
  2. 2.Max-Planck-Institut für QuantenoptikGarchingGermany
  3. 3.European Laboratory for Non-Linear Spectroscopy (LENS) and INFNFirenzeItaly
  4. 4.Dipartimento di FisicaUniversità di PerugiaPerugiaItaly

Personalised recommendations