Decomposition by Pivoting and Path Cardinality Constraints

  • Sven Hartmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1920)


In the relational data model, the problem of data redundancy has been successfully tackled via decomposition. In advanced data models, decomposition by pivoting provides a similar concept. Pivoting has been introduced by Biskup et al. [5], and used for decomposing relationship types according to a unary nonkey functional dependency. Our objective is to study pivoting in the presence of cardinality constraints which are commonly used in semantic data models. In order to ensure the equivalence of the given schema and its image under pivoting, the original application-dependent constraints have to be preserved. We discuss this problem for sets of participation and co- occurrence constraints. In particular, we prove the necessity of path cardinality constraints, and give an appropriate foundation for this concept.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.W. Armstrong, Dependency structures of database relationship, Information Processing 74 (1974) 580–583.MathSciNetGoogle Scholar
  2. 2.
    P. Assenova and P. Johannesson, Improving quality in conceptual modelling by the use of schema transformations, in: B. Thalheim (ed.), Conceptual Modeling (Springer, Berlin, 1996) 277–291.CrossRefGoogle Scholar
  3. 3.
    C. Batini, S. Ceri and S.B. Navathe, Database design with the ER model, (Benjamin/Cummings, Menlo Park, 1991).Google Scholar
  4. 4.
    J. Biskup, R. Menzel and T. Polle, Transforming an entity-relationship schema into object-oriented database schemas, in: Proc. ADBIS’95 (Moscow, 1995) 67–78.Google Scholar
  5. 5.
    J. Biskup, R. Menzel, T. Polle and Y. Sagiv, Decomposition of relationships through pivoting, in: B. Thalheim (ed.), Conceptual Modeling (Springer, Berlin, 1996) 28–41.CrossRefGoogle Scholar
  6. 6.
    J. Biskup and T. Polle, Decomposition of database classes under path functional dependencies and onto constraints, in: B. Thalheim and K.-D. Schewe (eds.), Foundations of Information and Knowledge systems (Springer, Berlin, 2000) 31–49.CrossRefGoogle Scholar
  7. 7.
    D. Calvanese and M. Lenzerini, Making object-oriented schemas more expressive, Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, (ACM Press, Minneapolis, 1994) 243–254.Google Scholar
  8. 8.
    P.P. Chen, The Entity-Relationship Model: Towards a unified view of data, ACM Trans. Database Syst. 1 (1976) 9–36.CrossRefGoogle Scholar
  9. 9.
    E.F. Codd, A relation model of data for large shared data banks, Commun. ACM 13 (1970) 377–387.zbMATHCrossRefGoogle Scholar
  10. 10.
    D.W. Embley, B.D. Kurtz and S.N. Woodfield, Object oriented systems analysis: a model-driven approach, (Yourdon Press Series, Prentice Hall, 1992).Google Scholar
  11. 11.
    J. Grant and J. Minker, Inferences for numerical dependencies, Theoretical Comput. Sci. 41 (1985) 271–287.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J. Gross and J. Yellen, Graph theory, (CRC press, Boca Raton, 1999).zbMATHGoogle Scholar
  13. 13.
    S. Hartmann, über die Charakterisierung und Konstruktion von ER-Datenbanken mit KardinalitÄtsbedingungen, Ph.D. thesis (Rostock, 1996).Google Scholar
  14. 14.
    S. Hartmann, On the consistency of int-cardinality constraints, in: T.W. Ling, S. Ram and M.L. Lee (eds.), Conceptual Modeling, LNCS 1507 (Springer, Berlin, 1998) 150–163.Google Scholar
  15. 15.
    S. Hartmann, On interactions of cardinality constraints, key and functional dependencies, in: B. Thalheim and K.-D. Schewe (eds.), Foundations of Information and Knowledge systems (Springer, Berlin, 2000) 31–49.Google Scholar
  16. 16.
    S.W. Liddle, D.W. Embley and S.N. Woodfield, Cardinality constraints in semantic data models, Data Knowl. Eng. 11 (1993) 235–270.zbMATHCrossRefGoogle Scholar
  17. 17.
    M. Lenzerini and P. Nobili, On the satisfiability of dependency constraints in Entity-Relationship schemata, Information Systems 15 (1990) 453–461.CrossRefGoogle Scholar
  18. 18.
    H. Mannila and K. RÄihÄ, The design of relational databases, (Addison-Wesley, Reading, 1992).zbMATHGoogle Scholar
  19. 19.
    J.A. Makowsky and E.V. Ravve, Dependency preserving refinements and the fundamental problem of database design, Data Knowl. Eng. 24 (1998) 277–312.zbMATHCrossRefGoogle Scholar
  20. 20.
    A. McAllister, Complete rules for n-ary relationship cardinality constraints, Data Knowl. Eng. 27 (1998) 255–288.zbMATHCrossRefGoogle Scholar
  21. 21.
    B. Thalheim, Foundations of Entity-Relationship Modeling, Ann. Math. Artif. Intell. 6 (1992) 197–256.MathSciNetGoogle Scholar
  22. 22.
    B. Thalheim, Entity-relationship modeling (Springer, Berlin, 2000).zbMATHGoogle Scholar
  23. 23.
    J.D. Ullman, Principles of database and knowledge-base systems, Vol. I (Computer Science Press, Rockville, 1988).Google Scholar
  24. 24.
    G.E. Weddell, Reasoning about functional dependencies generalized for semantic data models, ACM Trans. Database Syst. 17 (1992) 32–64.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Sven Hartmann
    • 1
  1. 1.FB MathematikUniversitÄt RostockRostockGermany

Personalised recommendations