Advertisement

Data Warehouse Scenarios for Model Management

  • Philip A. Bernstein
  • Erhard Rahm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1920)

Abstract

Model management is a framework for supporting meta-data related applications where models and mappings are manipulated as first class objects using operations such as Match, Merge, ApplyFunction, and Compose. To demonstrate the approach, we show how to use model management in two scenarios related to loading data warehouses. The case study illustrates the value of model management as a methodology for approaching meta-data related problems. It also helps clarify the required semantics of key operations. These detailed scenarios provide evidence that generic model management is useful and, very likely, implementable.

Keywords

Mapping Object Model Management Data Warehouse Book Order Star Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, P.A.: Panel: Is Generic Metadata Management Feasible? VLDB 2000Google Scholar
  2. 2.
    Bernstein, P.A., Levy, A., Pottinger, R.: A Vision for Management of Complex Models. MSR-TR-2000-53, http://www.research.microsoft.com/pubs, June 2000
  3. 3.
    Doan, AH., Domingos, P., Levy, A.: Learning Source Descriptions for Data Integration. Proc. WebDB 2000, pp81–92.Google Scholar
  4. 4.
    Jannink, J., Mitra, P., Neuhold, E., Pichai, S., Studer, R., Wiederhold, G.: An Algebra for Semantic Interoperation of Semistructured Data. Proc. 1999 IEEE Knowledge and Data Engineering Exchange Workshop (KDEX’99), Nov. 1999.Google Scholar
  5. 5.
    Li, W., Clifton, C.: Semantic Integration in Heterogeneous Databases using Neural Networks. Proc. VLDB94Google Scholar
  6. 6.
    Li, W., Clifton, C.: SEMINT: A Tool for Identifying Attribute Correspondences in Heterogeneous Databases Using Neural Network. Data and Knowledge Engineering, 33 (1), 2000Google Scholar
  7. 7.
    Miller, R., Ioannidis, Y.E., Ramakrishnan, R.: Schema Equivalence in Hetereogeneous Systems: Bridging Theory and Practice. Information Systems 19(1), 3–31, 1994CrossRefGoogle Scholar
  8. 8.
    Milo, T., Zohar, S.: Using Schema Matching to Simplify Heterogeneous Data Translation. Proc. VLDB98Google Scholar
  9. 9.
    Mitra, P., Wiederhold, G., Jannink, J.: Semi-automatic Integration of Knowledge Sources. Proc. of Fusion’ 99, Sunnyvale, USA, July 1999Google Scholar
  10. 10.
    Mitra, P., Wiederhold, G., Kersten, M.: A Graph-Oriented Model for Articulation of Ontology Interdependencies; Proc. Extending DataBase Technologies, EDBT 2000, LNCS Springer Verlag.Google Scholar
  11. 11.
    Mylopoulos, J., Motschnig-Pitrik, R.: Partitioning Information Bases with Contexts. Proc.3rd CoopIS, Vienna, pp. 44–54, May 1995.Google Scholar
  12. 12.
    Palopoli, L., Sacca, D., Ursino, D.: Semi-automatic, semantic discovery of properties from database schemas. Proc. IDEAS, 1998.Google Scholar
  13. 13.
    Palopoli, L., Sacca, D., Ursino, D.: An automatic technique for detecting type conflicts in database schemas. Proc. CIKM, 1998Google Scholar
  14. 14.
    Shu, N.C., Housel, B.C., Taylor, R.W., Ghosh, S.P., Lum, V.Y.: EXPRESS: A Data EXtraction, Processing and REStructuring System. ACM TODS 2,2: 134–174, 1977.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Philip A. Bernstein
    • 1
  • Erhard Rahm
    • 1
  1. 1.Microsoft CorporationRedmondUSA

Personalised recommendations