Advertisement

The Generation of Cosmic Magnetic Fields

  • Karl-Heinz Rädler
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 556)

Abstract

Most of the magnetic fields of cosmic objects are generated and maintained by dynamo action of the motions of electrically conducting fluids. A brief survey on observational facts concerning cosmic magnetic fields is given. Some basic principles of magnetofluiddynamics are explained. On this basis essential features of the dynamo theory of cosmic objects are developed, first on the kinematic level and later taking into account the full interaction between magnetic field and motion. Particular attention is paid on mean-field electrodynamics and mean-field magnetofluiddynamics and their application to mean-field dynamo models for objects showing irregular or turbulent motions and magnetic fields. A few explanations are given on dynamos in the Earth and the planets, in the Sun and stellar objects and in galaxies.

Keywords

Coriolis Force Electromotive Force Dynamo Model Magnetic Reynolds Number Solar Dynamo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Krause and K.-H. Rädler: ‘Elektrodynamik der mittleren Felder in turbulenten leitenden Medien und Dynamotheorie’, in Ergebnisse der Plasmaphysik und der Gaselektronik, volume 2, ed. by R. Rompe and M. Steenbeck,( Akademie-Verlag Berlin, 1971) pp. 1–154Google Scholar
  2. 2.
    F. Krause and K.-H. Rädler: Mean-Field Magnetohydrodynamics and Dynamo Theory, (Akademie-Verlag Berlin and Pergamon Press Oxford, 1980)zbMATHGoogle Scholar
  3. 3.
    H. K. Moffatt: Magnetic Field Generation in Electrically Conducting Fluids. (Cambridge University Press, 1978)Google Scholar
  4. 4.
    M. R. E. Proctor and A. D. Gilbert: Lectures on Solar and Planetary Dynamos, (Cambridge University Press, 1994)Google Scholar
  5. 5.
    P. H. Roberts: An Introduction to Magnetohydrodynamics (Longmans, Green and Co. Ltd., 1967)Google Scholar
  6. 6.
    A. A. Ruzmaikin, A. M. Shukurov, and D. D. Sokolo.: Magnetic Fields of Galaxies, (Astrophysics and Space Science Library Vol. 133. Kluwer Academic Publishers, 1988)Google Scholar
  7. 7.
    Ya. B. Zeldovich, A. A. Ruzmaikin, and D. D. Sokolo.: Magnetic Fields in Astrophysics, (The Fluid Mechanics of Astrophysics and Geophysics Vol.3. Gordon and Breach Science Publishers, 1983)Google Scholar
  8. 8.
    The Cosmic Dynamo, ed. by F. Krause, K.-H. Rädler, and G. Rüdiger, (Kluwer Academic Publishers Dordrecht Bosten London, 1993)Google Scholar
  9. 9.
    Stellar Dynamos: Nonlinearity and Chaotic Flows., ed. by M. Nunez and A. FerrizMas, (Astronomical Society of the Pacific, 1999)Google Scholar
  10. 10.
    Solar and Planetary Dynamos, ed. by M. R. E. Proctor, P. C. Matthews, and A. M. Rucklidge, (Cambridge University Press, 1993)Google Scholar
  11. 11.
    Stellar and Planetary Magnetism, ed. by A. M. Soward, (Gordon and Breach Science Publishers, 1983)Google Scholar
  12. 12.
    K.-H. Rädler: Rev. Mod. Astron. 8, 295 (1995)Google Scholar
  13. 13.
    P. H. Roberts: ‘Dynamo theory’, in Lectures on Applied Mathematics, volume 14, ed. by W. H. Reid, (Amer. Mathematics Soc., Providence, 1971) pp. 129–206Google Scholar
  14. 14.
    P. H. Roberts: ‘Dynamo theory’, in Astrophysical Fluid Dynamics, ed. by J.-P. Zahn and J. Zinn-Justin, (Elsevier Science Publishers B.V., 1993)Google Scholar
  15. 15.
    P. H. Roberts: ‘Fundamentals of dynamo theory’, in Lectures on Solar and Planetary Dynamos, ed. by M. R. E. Proctor and A. D. Gilbert, (Cambridge University Press, 1994), pp. 1–58Google Scholar
  16. 16.
    P. H. Roberts and A. M. Soward: Ann. Rev. Fluid Mech. 24, 459 (1992)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    N. O. Weiss: Y. J. Roy. Astron. Soc. 12, 432 (1971)ADSGoogle Scholar
  18. 18.
    J. Larmor: How could a rotating body such as the Sun become a magnet?, Rep. Brit. Assoc. Adv. Sc., pp. 159–160 (1919)Google Scholar
  19. 19.
    H. Bondi and T. Gold: Mon. Not. R. Astron. Soc. 110, 607 (1950)zbMATHADSMathSciNetGoogle Scholar
  20. 20.
    D. Moss: Mon. Not. R. Astron. Soc. 257, 593 (1992)ADSGoogle Scholar
  21. 21.
    K.-H. Rädler: Astron. Nachr. 301, 101 (1980)CrossRefGoogle Scholar
  22. 22.
    K.-H. Rädler: Astron. Nachr. 307, 89 (1986)zbMATHCrossRefADSGoogle Scholar
  23. 23.
    K.-H. Rädler:’ On the effect of differential rotation on axisymmetric and non-axisymmetric magnetic fields of cosmical bodies’, in Plasma-Astrophysics (Proceedings of the Joint Varenna-Abastumani International School and Workshop, Sukhumi, ESA SP-251, 1986), pp. 569–574Google Scholar
  24. 24.
    H.-J. Bräuer and K.-H. Rädler: Astron. Nachr. 308, 27 (1987)zbMATHADSCrossRefGoogle Scholar
  25. 25.
    K.-H. Rädler: Astron. Nachr. 295, 73 (1974)ADSCrossRefGoogle Scholar
  26. 26.
    T. G. Cowling: Mon. Not. R. Astron. Soc. 94, 39 (1934)ADSGoogle Scholar
  27. 27.
    S. I. Braginskij: Geomagn. Aeron. 4, 732 (1964)Google Scholar
  28. 28.
    R. Hide and T. N. Palmer: Geophys. Astrophys. Fluid Dyn. 19, 301 (1982)zbMATHADSCrossRefGoogle Scholar
  29. 29.
    R. W. James, P. H. Roberts, and D. E. Winch: Geophys. Astrophys. Fluid Dyn. 15, 149 (1980)zbMATHADSCrossRefGoogle Scholar
  30. 30.
    D. Lortz: Phys. Fluids 11, 913 (1968)CrossRefADSMathSciNetGoogle Scholar
  31. 31.
    W. M. Elsasser: Phys.Rev. 69, 106 (1946)zbMATHADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    E. C. Bullard and H. Gellman: Phil. Trans. Roy. Soc. A 247, 213 (1954)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    F. H. Busse: J. Geophys. Res. 80, 278 (1975)ADSCrossRefGoogle Scholar
  34. 34.
    A. Herzenberg: Phil. Trans. R. Soc. London, Ser. A 250, 543 (1958)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    R. D. Gibson: Q. J. Mech. Appl. Math. 21, 243 (1968)CrossRefGoogle Scholar
  36. 36.
    R. D. Gibson: Q. J. Mech. Appl. Math. 21, 257 (1968)CrossRefGoogle Scholar
  37. 37.
    F. J. Lowes and I. Wilkinson: Nature 198, 1158 (1963)ADSCrossRefGoogle Scholar
  38. 38.
    F. J. Lowes and I. Wilkinson: Nature 219, 717 (1968)ADSCrossRefGoogle Scholar
  39. 39.
    Yu. B. Ponomarenko: PMTF 1973(6), 47 (1973) in RussianGoogle Scholar
  40. 40.
    G. O. Roberts: Phil. Trans. R. Soc. London, Ser. A 266, 535 (1970)ADSCrossRefGoogle Scholar
  41. 41.
    G. O. Roberts: Phil. Trans. Roy. Soc. London A 271, 411 (1972)zbMATHADSCrossRefGoogle Scholar
  42. 42.
    S. Childress and A. D. Gilbert: Stretch, Twist, Fold: The Fast Dynamo, (Lecture Notes in Physics. Springer-Verlag Berlin Heidelberg New York, 1995)zbMATHGoogle Scholar
  43. 43.
    A. Gailitis: Magnetohydrodynamics 6, 14 (1970)Google Scholar
  44. 44.
    C. L. Pekeris, Y. Accad, and B. Shkoller: Phil. Trans. R. Soc. London, Ser. A 275, 425 (1973)ADSCrossRefGoogle Scholar
  45. 45.
    D. Gubbins: Phil. Trans. R. Soc. London, Ser. A 274, 493 (1973)ADSCrossRefGoogle Scholar
  46. 46.
    S. Kumar and P. H. Roberts: Proc. R. Soc. London, Ser. A 344, 235 (1975)ADSCrossRefGoogle Scholar
  47. 47.
    S. I. Braginskij: Sov. Phys. JETP 20, 726 (1964)Google Scholar
  48. 48.
    S. I. Braginskij: Sov. Phys. JETP 20, 1462 (1964)Google Scholar
  49. 49.
    S. I. Braginskij: Phys. Earth Planet. Inter. 11, 191 (1976)ADSCrossRefGoogle Scholar
  50. 50.
    S. I. Braginskij:’ The nonlinear dynamo and model-z’. In Lectures on Solar and Planetary Dynamos, ed. by M. R. E. Proctor and A. D. Gilbert, (Cambridge University Press, 1994) pp. 267–304Google Scholar
  51. 51.
    M. Steenbeck, F. Krause, and K.-H. Rädler: Z. Naturforsch. 21a, 369 (1966)ADSGoogle Scholar
  52. 52.
    E. N. Parker: Astrophys. J. 122, 293 (1955)ADSCrossRefMathSciNetGoogle Scholar
  53. 53.
    O. Lielausis: Astron. Nachr.315, 303 (1994)ADSCrossRefGoogle Scholar
  54. 54.
    A. Gailitis:’ Current status of liquid sodium MHD dynamo experiment in Riga’, in Proceedings of the International ConferenceTransfer Phenomena in Magnetohydrodynamic and Electroconducting Flows”(Aussois, France, 1997). pp. 33–38Google Scholar
  55. 55.
    F. H. Busse: Geophys. J. R. Astron. Soc. 42, 437 (1975)zbMATHGoogle Scholar
  56. 56.
    K.-H. Rädler, E. Apstein, M. Rheinhardt, and M. Schüler: Studia geoph. et geod. 42, 224 (1998)CrossRefGoogle Scholar
  57. 57.
    K.-H. Rädler, E. Apstein, and M. Schüler:’ The alpha-effect in the Karlsruhe dynamo experiment’ in Proceedings of the International ConferenceTransfer Phenomena in Magnetohydrodynamic and Electroconducting Flows” Held in Aussois, France, 1997, pp. 9–14Google Scholar
  58. 58.
    A. Tilgner: Phys. Lett. A 226, 75 (1996)ADSCrossRefGoogle Scholar
  59. 59.
    A. Tilgner: Acta Astron. et Geophys. Univ. Comenianae 19, 51 (1997)Google Scholar
  60. 60.
    F. Krause and M. Steenbeck: Z. Naturforsch. 22a, 671 (1967)ADSGoogle Scholar
  61. 61.
    K.-H. Rädler: Geophys. Astrophys. Fluid Dyn. 20, 191 (1982)zbMATHCrossRefGoogle Scholar
  62. 62.
    K.-H. Rädler and U. Geppert:’ Turbulent dynamo action in the high-conductivity limit: A hidden dynamo.’, in Stellar Dynamos: Nonlinearity and Chaotic Flows, ed. by M. Nunez and A. Ferriz-Mas, ( ASP Conference Series Vol.178, 1999) pp. 151–163.Google Scholar
  63. 63.
    K.-H. Rädler:’ Mean-field magnetohydrodynamics as a basis of solar dynamo theory’, in Basic Mechanisms of Solar Activity, ed. by V. Bumba and J. Kleczek, (D. Reidel Publishing Company Dordrecht Holland, 1976) pp. 223–344Google Scholar
  64. 64.
    T. S. Ivanova and A. A. Ruzmaikin: Sov. Astron. 20, 227 (1976)ADSGoogle Scholar
  65. 65.
    K.-H. Rädler: Z. Naturforsch. 23a, 1841 (1968)Google Scholar
  66. 66.
    K.-H. Rädler: Z. Naturforsch. 23a, 1851 (1968)ADSGoogle Scholar
  67. 67.
    Ya. B. Zeldovich: J. Exptl. Theoret. Phys.31, 154 (1956)Google Scholar
  68. 68.
    E. M. Drobyshevski, E. N. Kolesnikova, and V. S. Yuferev: J. Fluid Mech. 101, 65 (1980)zbMATHADSCrossRefGoogle Scholar
  69. 69.
    E. M. Drobyshevski and V. S. Yuferev: J. Fluid Mech. 65, 33 (1974)zbMATHADSCrossRefGoogle Scholar
  70. 70.
    M. Steenbeck and F. Krause: Astron. Nachr. 291, 49 (1969)zbMATHADSCrossRefGoogle Scholar
  71. 71.
    M. Steenbeck and F. Krause: Astron. Nachr. 291, 271 (1969)zbMATHADSCrossRefGoogle Scholar
  72. 72.
    H. K. Moffatt and M. R. E. Proctor: Geophys. Astrophys. Fluid Dyn. 21, 265 (1982)zbMATHADSCrossRefGoogle Scholar
  73. 73.
    K.-H. Rädler: Monatsber. Dtsch. Akad. Wiss. Berlin 11, 272 (1969)Google Scholar
  74. 74.
    K.-H. Rädler: Monatsber. Dtsch. Akad. Wiss. Berlin 12, 468 (1970)Google Scholar
  75. 75.
    P. H. Roberts: Phil. Trans. R. Soc. London, Ser. A 272, 663 (1972)ADSCrossRefGoogle Scholar
  76. 76.
    A. Brandenburg, I. Tuominen, and K.-H. Rädler: Geophys. Astrophys. Fluid Dyn. 49, 45 (1989)zbMATHADSCrossRefGoogle Scholar
  77. 77.
    K.-H. Rädler: Mem. Soc. Roy. Soc. Liege VIII, 109 (1975)Google Scholar
  78. 78.
    G. Rüdiger: Astron. Nachr. 301, 181 (1980)ADSCrossRefGoogle Scholar
  79. 79.
    G. Rüdiger and D. Elstner: Astron. Astrophys., 1 (1993)Google Scholar
  80. 80.
    T. T. Ivanova and A. A. Ruzmaikin: Astron. Nachr. 306, 177 (1985)zbMATHADSCrossRefGoogle Scholar
  81. 81.
    P. H. Roberts and M. Stix: Astron. Astrophys. 18, 453 (1972)ADSGoogle Scholar
  82. 82.
    W. Deinzer and M. Stix: Astron. Astrophys. 12, 111 (1971)ADSGoogle Scholar
  83. 83.
    W. Deinzer, H.-U. v. Kusserow, and M. Stix: Astron. Astrophys. 36, 69 (1974)ADSGoogle Scholar
  84. 84.
    M. Stix: Astron. Astrophys. 24, 275 (1973)ADSGoogle Scholar
  85. 85.
    A. Brandenburg and I. Tuominen:’ The solar dynamo’. In The Sun and Cool Stars: Activity, Magnetism, Dynamos, ed. by I. Tuominen, D. Moss, and G. Rüdiger, (Lecture Notes in Physics, Springer Verlag, 1991)Google Scholar
  86. 86.
    M. Stix: Geophys. Astrophys. Fluid Dyn. 62, 211 (1991)ADSCrossRefGoogle Scholar
  87. 87.
    M. Stix: Astron. Astrophys. 47, 243 (1975)ADSGoogle Scholar
  88. 88.
    M. P. White: Astron. Nachr. 299, 209 (1978)ADSCrossRefGoogle Scholar
  89. 89.
    W. Deinzer, H. Grosser, and D. Schmitt: Astron. Astrophys. 273, 405 (1993)ADSGoogle Scholar
  90. 90.
    K.-H. Rädler and E. Wiedemann:’ Mean-field models of galactic dynamos admitting axisymmetric and non-axisymmetric magnetic field structures’ in Galactic and Intergalactic Magnetic Fields (Proceedings of the IAU Symposium No 140, Heidelberg 1990), ed. by R. Beck, P. P. Kronberg, and R. Wielebinski, (Kluwer Academic Publishers, 1990), pp. 107–112Google Scholar
  91. 91.
    D. Elstner, R. Meinel, and G. Rüdiger: Geophys. Astrophys. Fluid Dyn. 50, 85 (1990)ADSCrossRefGoogle Scholar
  92. 92.
    G. Rüdiger, D. Elstner, and M. Schultz:’ The galactic dynamo: Modes and models’, in The Cosmic Dynamo, ed. by F. Krause, G. Rüdiger, and K.-H. Rädler, (Kluwer Academic Publishers, 1993), pp. 321–331Google Scholar
  93. 93.
    S. A. Balbus and J. F. Hawley: Rev. Mod. Phys. 70, 1 (1998)ADSCrossRefGoogle Scholar
  94. 94.
    G. Rüdiger and L.L. Kichatinov: Astron. Astrophys. 269, 581 (1993)ADSGoogle Scholar
  95. 95.
    G. B. Field, E. G. Blackman, and H. Chou: Astrophys. J. 513, 638 (1999)ADSCrossRefGoogle Scholar
  96. 96.
    G. Rüdiger: Differential Rotation and Stellar Convection, (Akademie Verlag Berlin, 1989)Google Scholar
  97. 97.
    G. Rüdiger:’ Dynamo theory and the period of the solar cycle’, in Solar Magnetic Fields, ed. by M. Schüssler and W. Schmidt, (Cambridge University Press, 1994), pp. 77–93Google Scholar
  98. 98.
    A. Brandenburg and I. Tuominen: Geophys. Astrophys. Fluid Dyn. 49, 129 (1989)ADSCrossRefGoogle Scholar
  99. 99.
    R. Hollerbach: Geophys. Astrophys. Fluid Dyn. 60, 245 (1991)ADSCrossRefGoogle Scholar
  100. 100.
    K.-H. Rädler, E. Wiedemann, A. Brandenburg, R. Meinel, and I. Tuominen: Astron. Astrophys. 239, 413 (1990)ADSGoogle Scholar
  101. 101.
    D. M. Barker and D. Moss: Astron. Astrophys.283, 1009 (1994)ADSGoogle Scholar
  102. 102.
    H. Fuchs, K.-H. Rädler, M. Rheinhardt, and M. Schüler: Chaos, Solitons & Fractals 5, 2013 (1995)CrossRefADSGoogle Scholar
  103. 103.
    W. V. R. Malkus:’ Energy sources for planetary dynamos’, in Lectures on Solar and Planetary Dynamos, ed by M. R. E. Proctor and A. D. Gilbert, (Cambridge University Press, 1994), pp. 161–179Google Scholar
  104. 104.
    M. R. E. Proctor:’ Convection and magnetoconvection in a rapidly rotating sphere’, in Lectures on Solar and Planetary Dynamos, ed. by M. R. E. Proctor and A. D. Gilbert, (Cambridge University Press, 1994) pp. 97–115Google Scholar
  105. 105.
    R. Hollerbach: Phys. Earth Planet. Inter. 98, 163 (1996)ADSCrossRefGoogle Scholar
  106. 106.
    A. M. Soward: Geophys. Astrophys. Fluid Dyn. 62, 191 (1991)ADSCrossRefGoogle Scholar
  107. 107.
    U. Christensen and P. Olson: Geophys. Res. Lett. 25, 1565 (1998)ADSCrossRefGoogle Scholar
  108. 108.
    U. Christensen, P. Olson, and G. A. Glatzmaier: Geophys. J. Int. 138, 393 (1999)ADSCrossRefGoogle Scholar
  109. 109.
    G. A. Glatzmaier and P. H. Roberts: Nature 377, 203 (1995)ADSCrossRefGoogle Scholar
  110. 110.
    G. A. Glatzmaier and P. H. Roberts: Physica D 97, 81 (1996)CrossRefGoogle Scholar
  111. 111.
    G. A. Glatzmaier and P. H. Roberts: Science 274, 1887 (1996)ADSCrossRefGoogle Scholar
  112. 112.
    E. Grote, F. H. Busse, and A. Tilgner: Phys. Earth Planet. Inter. 117, 259 (2000)ADSCrossRefGoogle Scholar
  113. 113.
    W. Kuang and J. Bloxham: Nature 389, 371 (1997)ADSCrossRefGoogle Scholar
  114. 114.
    D. Moss and A. Brandenburg: Geophys. Astrophys. Fluid Dyn. 80, 229 (1995)ADSCrossRefGoogle Scholar
  115. 115.
    F. H. Busse, E. Grote, and A. Tilgner: Studia geoph. et geod. 42, 211 (1998)CrossRefGoogle Scholar
  116. 116.
    D. R. Fearn:’ Nonlinear planetary dynamos’, in Lectures on Solar and Planetary Dynamos, ed. by M. R. E. Proctor and A. D. Gilbert, editors, (Cambridge University Press, 1994), pp. 219–244Google Scholar
  117. 117.
    E. E. DeLuca and P. A. Gilman: The Solar Dynamo, (The University of Arizona Press Tucson, 1992), pp. 275–303.Google Scholar
  118. 118.
    P. A. Gilman:’ What can we learn about solar cycle mechanisms from observed velocity fields?’, in The Solar Cycle, ( ASP Conference Series 27, 1992), pp. 241–254Google Scholar
  119. 119.
    K.-H. Rädler:’ The solar dynamo’, in Inside the Sun, ed. by G. Berthomieu and M. Cribier, (Proceedings of the IAU Colloquium No 121, Kluwer Academic Publishers, 1990), pp. 385–402Google Scholar
  120. 120.
    R. Rosner and N. O. Weiss:’ The origin of the solar cycle’, in The Solar Cycle, ed. by K. Harvey, (Astronomical Society of the Pacific, 1992), pp. 511–531Google Scholar
  121. 121.
    M. Stix:’ Dynamo theory and the solar cycle’, in Basic Mechanisms of Solar Activity, ed. by V. Bumba and J. Kleczek, (D. Reidel Publishing Company Dordrecht Holland, 1976), pp. 367–388Google Scholar
  122. 122.
    N. O. Weiss:’ Solar and stellar dynamos’, in Lectures on Solar and Planetary Dynamos, ed. by M. R. E. Proctor and A. D. Gilbert, (Cambridge University Press, England, 1994), pp. 59–95CrossRefGoogle Scholar
  123. 123.
    K. G. Libbrecht:’ The excitation and damping of solar oscillations’, in Seismology of the Sun and Sun-Like Stars, ed. by E.J. Rolfe, (ESA Publications Division, 1988) pp. 3–10Google Scholar
  124. 124.
    D. Schmitt:’ The solar dynamo’, in The Cosmic Dynamo, ed. by F Krause, K.-H. Rädler, and G. Rüdiger, (Kluwer Academic Publishers, 1993), pp. 1–12Google Scholar
  125. 125.
    D. Schmitt, A. Ferriz-Mas, and M. Schüssler:’ An α-effect due to instability of toroidal magnetic flux tubes’, in Solar Magnetic Fields, ed. by M. Schüssler and W. Schmidt, (Cambridge University Press, 1994), pp. 101–103Google Scholar
  126. 126.
    F. Moreno-Insertis, M. Schüssler, and A. Ferriz-Mas:’ Storage of magnetic flux in the overshoot region’, in The Cosmic Dynamo, ed. by F. Krause, K.-H. Rädler, and G. Rüdiger, (Kluwer Academic Publishers, 1993) pp. 41–44Google Scholar
  127. 127.
    M. Schüssler:’ Flux tubes and dynamos’, in The Cosmic Dynamo, ed, by F. et Al. Krause, (IAU, 1993) pp. 27–39Google Scholar
  128. 128.
    A. Brandenburg:’ Simulating the solar dynamo’, In The Cosmic Dynamo, ed. by F. Krause, K.-H. Rädler, and G. Rüdiger, (Kluwer Akademic Publishers, 1993) pp. 111–121Google Scholar
  129. 129.
    G. Rüdiger and A. Brandenburg: Astron. Astrophys. 296, 557 (1995)ADSGoogle Scholar
  130. 130.
    P. Hoyng: Astron. Astrophys. 272, 321 (1993)ADSMathSciNetGoogle Scholar
  131. 131.
    P. Hoyng, D. Schmitt, and L. J. W. Teuben: Astron. Astrophys. 289, 265 (1994)ADSGoogle Scholar
  132. 132.
    G. Belvedere:’ Solar and stellar cycles’. In Inside the Sun, ed. by M. Cribier and G. Berthomieu, (Kluwer Academic Publishers, 1990) pp. 371–382Google Scholar
  133. 133.
    E. H. Levy:’ Physical assessment of stellar dynamo theory’, in Cool Stars, Stellar Systems, and the Sun, ed. by M. S. Giampapa and J. A. Bookbinder, (ASP Conference Series 26, 1992) pp. 223–239Google Scholar
  134. 134.
    N. O. Weiss:’ Dynamo processes in stars’, in Accretion Discs and Magnetic Fields in Astrophysics, ed. by G. Belvedere, (Kluwer Academic Publishers, 1989), pp. 11–29Google Scholar
  135. 135.
    D. Elstner:’ The galactic dynamo-success and limitations of current models’. in Plasma Turbulence and Energetic Particles in Astrophysics (Proceedings of the International Conference Cracow1999), ed. by M. Ostrowski and R. Schlickeiser, (Colonel, Poland, 1999), pp. 74–83Google Scholar
  136. 136.
    R. Beck, A. Brandenburg, D. Moss, A. Shukurov, and D. Sokolo.: Ann. Rev. Astron. Astrophys.34, 155 (1996)ADSCrossRefGoogle Scholar
  137. 137.
    R. Wielebinski and F. Krause: The Astron. Astrophys. Rev. 4, 449 (1993)ADSCrossRefGoogle Scholar
  138. 138.
    K. Ferriére: Astron. Astrophys. 310, 438 (1996)ADSGoogle Scholar
  139. 139.
    U. Ziegler: Astron. Astrophys. 313, 448 (1996)ADSGoogle Scholar
  140. 140.
    D. Schultz, M. Elstner and G. Rüdiger: Astron. Astrophys. (1993)Google Scholar
  141. 141.
    A. M. Soward: Astron. Nachr. 299, 25 (1978)ADSCrossRefGoogle Scholar
  142. 142.
    D. Moss: Mon. Not. R. Astron. Soc. 297, 860 (1998)ADSCrossRefGoogle Scholar
  143. 143.
    R. Rhode, R. Beck, and D. Elstner: Astron. Astrophys. 350, 423 (1999)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Karl-Heinz Rädler
    • 1
  1. 1.Astrophysikalisches Institut PotsdamPotsdamGermany

Personalised recommendations