Advertisement

Path Tracing in Genetic Algorithms Applied to the Multiconstrained Knapsack Problem

  • Jens Levenhagen
  • Andreas Bortfeldt
  • Hermann Gehring
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2037)

Abstract

This contribution investigates the usefulness of F. Glover’s path tracing concept within a Genetic Algorithm context for the solution of the multiconstrained knapsack problem (MKP). A state of the art GA is therefore extended by a path tracing component and the Chu/Beasley MKP benchmark problems are used for numerical tests.

Keywords

Genetic Algorithm Memetic Algorithm Genetic Algorithm Hybridization Tabu List Genetic Algorithm Apply 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raidl, G.R., An Improved Genetic Algorithm for the Multiconstrained 0-1 Knapsack Problem, Proceedings of the 5th IEEE International Conference on Evolutionary Computation, pp. 207–211, 1998Google Scholar
  2. 2.
    Chu, P.C. and Beasley, J.E., A Genetic Algorithm for the Multidimensional Knap-sack Problem, Journal of Heuristics, 4: pp. 63–86, 1998CrossRefzbMATHGoogle Scholar
  3. 3.
    Gottlieb, J., On the Effectivity of Evolutionary Algorithms for the Multidimensional Knapsack Problem, in: Fonlupt, C. et.al.(Eds.): Proceedings of Artificial Evolution, pp. 23–37, Lecture Notes in Computer Science, Vol. 1829, Springer, 2000CrossRefGoogle Scholar
  4. 4.
    Glover, F., Scatter Search and Path Relinking, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 297–316, McGraw-Hill, 1999Google Scholar
  5. 5.
    Moscato, P., Memetic Algorithms: A Short Introduction, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 219–234, McGraw-Hill, 1999Google Scholar
  6. 6.
    Merz, P. und Freisleben, B., Genetic Local Search for the TSP: New Results, Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, pp. 159–164, IEEE Press, 1997Google Scholar
  7. 7.
    Merz, P. and Freisleben, B., Fitness Landscapes and Memetic Algorithm Design, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 245–260, McGraw-Hill, 1999Google Scholar
  8. 8.
    Reeves, C.R. and Yamada, T., Embedded Path Tracing and Neighbourhood Search Techniques, in: Miettinen, K. et.al.(Eds.): Evolutionary Algorithms in Engineering and Computer Science, pp. 95–111, Wiley, 1998Google Scholar
  9. 9.
    Reeves, C.R. and Yamada, T., Goal-Oriented Path Tracing Methods, in: Corne, D. et.al.(Eds.): New Ideas in Optimization, pp. 341–356, McGraw-Hill, 1999Google Scholar
  10. 10.
    Falkenauer, E., Genetic Algorithms and Grouping Problems, Wiley, 1998Google Scholar
  11. 11.
    Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989Google Scholar
  12. 12.
    Holland, J.H., Adaption in Artificial Systems, The University of Michigan Press, 1975Google Scholar
  13. 13.
    Reeves, C.R. (Ed.), Modern Heuristic Techniques for Combinatorial Problems, Blackwell Scientific Publications, 1993Google Scholar
  14. 14.
    Levenhagen, J., Ein genetischer Algorithmus mit Pfadverfolgung zur Loesung des mehrfach restringierten Rucksackproblems, Diploma thesis, University of Hagen, 2000Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jens Levenhagen
    • 1
  • Andreas Bortfeldt
    • 2
  • Hermann Gehring
    • 2
  1. 1.Astrium GmbHFriedrichshafenGermany
  2. 2.Dept. of Business InformaticsUniversity of HagenHagenGermany

Personalised recommendations