Conventional and Multirecombinative Evolutionary Algorithms for the Parallel Task Scheduling Problem

  • Susana Esquivel
  • Claudia Gatica
  • Raül Gallard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2037)


The present work deals with the problem of allocating a number of non identical tasks in a parallel system. The model assumes that the system consists of a number of identical processors and that only one task may be executed on a processor at a time. All schedules and tasks are nonpreemptive. Graham’s


Genetic Algorithm Schedule Problem Evolutionary Algorithm Task Graph Static Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Graham R.L.: Bounds on Multiprocessing Anomalies and Packing Algorithms. Proceedings of the AFIPS 1972 Spring Joint Computer Conference, pp 205–217, (1972).Google Scholar
  2. 2.
    Esquivel S., Leiva A., Gallard R: Multiplicity in Genetic Algorithms to Face Multicriteria Optimization. Proceedings of the Congress on Evolutionary Algorithms (IEEE), Washington DC, pp 85–90, (1999).Google Scholar
  3. 3.
    Horowitz E. and Sahni S.: Exact and Approximate Algorithms for Scheduling non Identical Processors. Journal of the ACM, vol. 23,No. 2, pp 317–327, (1976).CrossRefzbMATHGoogle Scholar
  4. 4.
    Ercal F.: Heuristic Approaches to Task Allocation for Parallel Computing. Doctoral Dissertation, Ohio State University, (1988).Google Scholar
  5. 5.
    Reeves C.R., Karatza H.: Dynamic Sequencing of a Multiprocessor System; a Genetic Algorithnm, Proc. of 1st International Conference on Artificial Neural Nets and Genetic Algorithms. Springer Verlag (1993).Google Scholar
  6. 6.
    Seredynski F.: Task Scheduling with use of Classifier Systems. AISB. International Workshop 1997: Selected Papers, Lecture Notes in Computers Sciences 1305, pp 287–306, Springer, (1997).Google Scholar
  7. 7.
    Tsang E.P.K., Voudouris C.: Fast Local Search and Guided Local Search and their Applications to British Telecom’s Workforce Scheduling Problem. Operations Research Letters 20(3), pp 129–137 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Yue K.K., Lilja D.J.: Designing Multiprocessor Scheduling Algorithms using a Distributed Genetic Algorithm. Evolutionary Algorithms in Engineering Applications, pp 207–222. Springer (1997).Google Scholar
  9. 9.
    Kidwell M.: Using Genetic Algorithms to Schedule Tasks on a Bus-based System. Proceedings of the 5th International Conference on Genetic Algorithms, pp 368–374, (1993).Google Scholar
  10. 10.
    Krause M., Nissen V.,: On Using Penalty Functions and Multicriteria Optimization Techniques in Facility Layout. Evolutionary Algorithms for Management Applications, ed J. Biethahn and V. Nissen (Berling: Springer), pp 153–166, (1995).CrossRefGoogle Scholar
  11. 11.
    Lin S-C, Goodman E.D, Punch W.F,: Investigating Parallel Genetic Algorithms on Job Shop Scheduling Problems. Evolutionary Programming VI, Lecture Notes in Computer Sciences 1213, pp 383–393, Springer (1997).CrossRefGoogle Scholar
  12. 12.
    Murata T., Ishibuchi H.: Positive and Negative Combinations and Effects of Crossover and Mutation Operators in Sequencing Problems. Proc. of 1996 IEEE International Conference on Evolutionary Computation, pp 170–175. IEEE (1996).Google Scholar
  13. 13.
    Sannomiya N., Iima H.: Applications of Genetic Algorithms to Scheduling Problems in Manufacturing Processing. Proc. of 1996 IEEE International Conference on Evolutionary Computation, pp 523–528, IEEE (1996).Google Scholar
  14. 14.
    Syswerda G.,: Scheduling Optimisation using Genetic Algorithms. Davis, L.,Editor, Handbook of Genetic Algorithms, chapter 21, pp 332–349, Van Nostrand Reinhold, New York, (1991).Google Scholar
  15. 15.
    Yamada T., Nakano R.: Scheduling by Genetic Local Search with Multi-step crossover. Parallel Problem Solving from Nature, PPSN IV, Lecture Notes in Computer Sciences 1141, pp 960–969, Springer (1996).CrossRefGoogle Scholar
  16. 16.
    Yamada T., Reeves C.R.: Solving the Csum Permutations Flow Shop Scheduling Problem by Genetic Local Search. ICEC (1998).Google Scholar
  17. 17.
    Yamada, T., Reeves C.R.: Permutation Flow Scheduling by Genetic Local Search. Proc. of the 2nd International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pp 232–238 (1997).Google Scholar
  18. 18.
    Withley D., Starkweather T., Fuquay D’A: Scheduling Problems and Travelling Salesman: The Genetic Edge Recombination Operator. Proceedings of the 3th International Conference on Genetic Algorithms, pp 133–140. Morgan Kaufmann Publishers, Los Altos CA, (1989).Google Scholar
  19. 19.
    Fox G.C.: A Review of Automatic Load Balancing and Decomposition Methods for the Hipercube. In M Shultz, ed., Numerical Algorithms for Modern Parallel Computer Architectures, Springer Verlag, pp 63–76, (1988).Google Scholar
  20. 20.
    Bagchi S., Uckum S., Miyabe Y., Kawamura K.: Exploring Problem Specific Recombination Operators for Job Shop Scheduling. Proceedings of the 4th International Conference on Genetic Algorithms, pp 10–17 (1991)Google Scholar
  21. 21.
    Bruns R.: Direct Chromosome Representation and Advanced Genetic Operators for Production Scheduling. Proceedings of the 5th International Conference on Genetic Algorithms, pp 352–359, (1993).Google Scholar
  22. 22.
    Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag, Third, Extended Edition, (1996).Google Scholar
  23. 23.
    Esquivel S., Ferrero S., Gallard R., Alfonso H. Salto C., Schütz M.:Enhanced evolutionary algorithms for single and multiobjective optimization in the job shop scheduling problem. To appear in the Knowledge Based System Journal, Elsevier 2001.Google Scholar
  24. 24.
    Pinedo M.,: Scheduling: Theory, Algorithms and Systems. Prentice Hall International Series in Industrial and Systems Engineering, (1995).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Susana Esquivel
  • Claudia Gatica
  • Raül Gallard
    • 1
  1. 1.Laboratorio de Investigación y Desarrollo en Inteligencia ComputacionalUniversidad Nacional de San LuisArgentina

Personalised recommendations