Advertisement

A Parallel Hybrid Heuristic for the TSP

  • Ranieri Baraglia
  • José Ignacio Hidalgo
  • Raffaele Perego
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2037)

Abstract

In this paper we investigate the design of a coarse-grained parallel implementation of Cga-LK, a hybrid heuristic for the Traveling Salesman Problem (TSP). Cga-LK exploits a compact genetic algorithm in order to generate high-quality tours which are then refined by means of an efficient implementation of the Lin-Kernighan local search heuristic. The results of several experiments conducted on a cluster of workstations with different TSP instances show the efficacy of the parallelism exploitation.

Keywords

Parallel algorithms TSP compact genetic algorithm LinKernighan algorithm hybrid GA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing. Science, 220:671–680, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Grefenstette, R. Gopal, B. Rosimaita, and D. van Gucht. Genetic algorithms for the traveling salesman problem. In Proceedings of the International Conference on Genetics Algorithms and their Applications, pages 160–168, 1985.Google Scholar
  3. 3.
    H.C. Braun. On solving traveling salesman problems by genetic algorithm. In H.P. Schwefel and R. Männer, editors, Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer Science, pages 129–133, Berlin, 1991. Springer-Verlag.CrossRefGoogle Scholar
  4. 4.
    G.A. Croes. A method for solving traveling salesman problems. Operations Research, 6:791–812, 1958.MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Lin. Computer solution of the traveling salesman problem. Bell System Technical Journal, 44:2245–2269, 1965.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling salesman problem. Operations Research, 21:498–516, 1973.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    D.S. Johnson and L.A. McGeoch. Local Search in Combinatorial Optimization, chapter The Traveling Salesman Problem: A Case Study in Local Optimization. John Wiley and Sons, New York, 1996.Google Scholar
  8. 8.
    D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding tours in the tsp. Preliminary chapter of a planned monograph on the TSP, available at URL: http://www.caam.rice.edu/~keck/reports/lk_report.ps, 1999.
  9. 9.
    O. Martin and S.W. Otto. Combining simulated annealing with local search heuristic. To appear on Annals of Operation Research.Google Scholar
  10. 10.
    P. Merz and B. Freisleben. Genetic local search for the TSP: New results. In Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, pages 159–163, Indianapolis, USA, 1997. IEEE press.Google Scholar
  11. 11.
    M. Gorges-Schleuter. Asparagos96 and the travelling salesman problem. In T. Bäck, editor, Proceedings of the Fourth International Conference on Evolutionary Computation, pages 171–174, New York, EEE Press, 1997.Google Scholar
  12. 12.
    R. Perego R. Baraglia, J.I. Hidalgo. A hybrid approach for the TSP combining genetics and the Lin-Kerninghan local search. Technical Report CNUCE-B4-2000-007, CNUCE-Institute of the Italian National Research Council, 2000.Google Scholar
  13. 13.
    R. Perego R. Baraglia, J.I. Hidalgo. A hybrid approach for the Traveling Salesman Problem. submitted paper.Google Scholar
  14. 14.
    G. Harik, F. Lobo, and D. Goldberg. The compact genetic algorithm. IEEE Transactions on Evolutionary Computation, 3(4):287–297, 1999.CrossRefGoogle Scholar
  15. 15.
    D. Thierens and D. Goldberg. Mixing in genetic algorithms. In S. Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, pages 38–45, San Mateo, CA, 1993. Morgan Kaufmann.Google Scholar
  16. 16.
    E. Cantu-Paz. A survey of parallel genetic algoritms. Technical Report 97003, University of Illinois at Urbana-Champaign, Genetic Algoritms Lab. (IlliGAL), http://www.gal4.ge.uiuc.edu/illigal.home.html, July 1997.
  17. 17.
    M. Tomassini. A survey of genetic algorithms. Technical Report 95/137, Department of Computer Science, Swiss Federal Institute of Technology, Lausanne, Switzerland, July 1995.Google Scholar
  18. 18.
    P. Grosso. Computer Simulations of Genetic Adaptation: Parallel Subcomponent Interaction in a Multilocus Model. PhD thesis, University of Michigan, 1985.Google Scholar
  19. 19.
    R. Tanese. Parallel genetic algorithms for a hypercube. In Proceedings of the Second International Conference on Genetic Algorithms, pages 177–183. L. Erlbaum Associates, 1987.Google Scholar
  20. 20.
    R. Tanese. Distribuited genetic algorithms. In Proceedings of the Third International Conference on Genetic Algorithms, pages 434–440. M. Kaufmann, 1989.Google Scholar
  21. 21.
    S. Cohoon, J. Hedge, S. Martin, and D. Richards. Punctuated equilibria: a parallel genetic algorithm. IEEE Transaction on CAD, 10(4):483–491, April 1991.CrossRefGoogle Scholar
  22. 22.
    C. Pettey, M. Lenze, and J. Grefenstette. A parallel genetic algorithm. In Proceedings of the Second International Conference on Genetic Algorithms, pages 155–161. L. Erlbaum Associates, 1987.Google Scholar
  23. 23.
    H. Muhlenbein, M. Schomisch, and J. Born. The parallel genetic algorithm as function optimizer. Parallel Computing, 17:619–632, 1991.CrossRefzbMATHGoogle Scholar
  24. 24.
    W. Gropp, E. Lusk, and A. Skjellum. Using MPI. Massachusetts Institute of Technology, 1999.Google Scholar
  25. 25.
    D.E. Culler and J.P. Singh. Parallel Computer Architecture a Harware/Sotware Approach. Morgan Kaufmann Publishers, Inc., 1999.Google Scholar
  26. 26.
    G. Reinelt. TSPLIB-A traveling salesman problem library. ORSA Journal on Computing, 3:376–384, 1991.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Ranieri Baraglia
    • 1
  • José Ignacio Hidalgo
    • 2
  • Raffaele Perego
    • 1
  1. 1.CNUCE - Institute of the Italian National Research CouncilPisaItaly
  2. 2.Dpto. Arquitectura Computadores y AutomaticaUniversidad ComplutenseMadridSpain

Personalised recommendations