Advertisement

On Performance Estimates for Two Evolutionary Algorithms

  • Pavel A. Borisovsky
  • Anton V. Eremeev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2037)

Abstract

In this paper we consider the upper and lower bounds on probability to generate the solutions of sufficient quality using evolutionary strategies of two kinds: the (1+1)-ES and the (1,λ)-ES (see e.g. [1,2]). The results are obtained in terms of monotone bounds [3] on transition probabilities of the mutation operator. Particular attention is given to the computational complexity of mutation procedure for the NP-hard combinatorial optimization problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bäck, T., Schwefel H.-P.: An overview of evolutionary algorithms for parameter optimization, Evolutionary Computation, 1(1) (1993) 1–23CrossRefGoogle Scholar
  2. 2.
    Rechenberg I.: Evolutionsstrategie’94. Formann-Holzboog Verlag, Stuttgart (1994)Google Scholar
  3. 3.
    Eremeev A.V.: Modeling and Analysis of Genetic Algorithm with Tournament Selection. Proc. of Artificial Evolution Conference (AE’99). Lecture Notes in Computer Science, Vol. 1829. Springer Verlag (2000) 84–95Google Scholar
  4. 4.
    Motwani, R. and Raghavan, P.: Randomized Algorithms. Cambridge University Press (1995)Google Scholar
  5. 5.
    Rudolph, G.: Finite Markov Chain Results in Evolutionary Computation: A Tour d’Horizon, Fundamenta Informaticae 35(1-4) (1998) 67–89MathSciNetzbMATHGoogle Scholar
  6. 6.
    Arora, S., Lund, C.: Hardness of approximations. Approximation Algorithms for NP-Hard Problems. Ed. by S.D. Hochbaum. PWS Publishing Company, (1995) 399–446Google Scholar
  7. 7.
    Garey, M.R. and Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness. W.H. Freeman and Company, San Francisco (1979)zbMATHGoogle Scholar
  8. 8.
    Ausiello, G., Protasi, M.: Local search, reducibility and approximability of NP-optimization problems. Information Processing Letters, 54 (1995) 73–79MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ko, K.: Some observations on the probabilistic algorithms and NP-hard problems, Information Processing Letters, 14 (1982) 39–43MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Pavel A. Borisovsky
    • 1
  • Anton V. Eremeev
    • 2
  1. 1.Mathematical DepartmentOmsk State UniversityOmskRussia
  2. 2.Omsk Branch of Sobolev Institute of MathematicsOmskRussia

Personalised recommendations