Skip to main content

Determining Progression in Glaucoma Using Visual Fields

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2035))

Included in the following conference series:

Abstract

The standardized visual field assessment, which measures visual function in 76 locations of the central visual area, is an important diagnostic tool in the treatment of the eye disease glaucoma. It helps determine whether the disease is stable or progressing towards blindness, with important implications for treatment. Automatic techniques to classify patients based on this assessment have had limited success, primarily due to the high variability of individual visual field measurements.

The purpose of this paper is to describe the problem of visual field classification to the data mining community, and assess the success of data mining techniques on it. Preliminary results show that machine learning methods rival existing techniques for predicting whether glaucoma is progressing—though we have not yet been able to demonstrate improvements that are statistically significant. It is likely that further improvement is possible, and we encourage others to work on this important practical data mining problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Armitage and G. Berry. Statistical Methods in Medical Research. Blackwell Scientific Pulications, Oxford, third edition, 1994.

    Google Scholar 

  2. M.K. Birch, P.K. Wishart, and N.P. O’Donnell. Determining progressive visual field loss in serial humphrey visual fields. Ophthomology, 102(8):1227–1235, 1995.

    Google Scholar 

  3. L. Brigatti, K. Nouri-Mahdavi, M. Weitzman, and J. Caprioli. Automatic detection of glaucomatous visual field progression with neural networks. Archives of Ophthalmol., 115:725–728, 1997.

    Google Scholar 

  4. R.O. Burk, A. Tuulonen, and P.J. Airaksinen. Laser scanning tomography of localised nerve fibre layer defects. British J. of Ophthalmol, 82(10):1112–1117, 1998.

    Article  Google Scholar 

  5. B.C. Chauhan and C.A. Johnson. Test-retest variability of frequency-doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. Investigative Ophthomology and Vision Science, 40(3):648–656, 1999.

    Google Scholar 

  6. B.C. Chauhan, S.M. Drance, and G.R. Douglas. The use of visual field indices in detecting changes in the visual field in glaucoma. Investigative Ophthomology and Vision Science, 31(3):512–520, 1990.

    Google Scholar 

  7. C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

    MATH  Google Scholar 

  8. D.P. Crabb, F.W. Fitzke, A.I. McNaught, D.F. Edgar, and R.A. Hitchings. Improving the prediction of visual field progression in glaucoma using spatial processing. Ophthomology, 104(3):517–524, 1997.

    Google Scholar 

  9. M. Fingeret and T.L. Lewis. Primary care of the glaucomas. Mc Graw Hill, New York, second edition, 2001.

    Google Scholar 

  10. J.H. Friedman. Greedy function approximation: A gradient boosting machine. Technical report, Department of Statistics, Stanford University, CA, 1999.

    Google Scholar 

  11. D.B. Henson, S.E. Spenceley, and D.R. Bull. Artificial neural network analysis of noisy visual field data in glaucoma. Art. Int. in Medicine, 10:99–113, 1997.

    Article  Google Scholar 

  12. R.C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11:63–91, 1993.

    Article  MATH  Google Scholar 

  13. J. Katz. Scoring systems for measuring progression of visual field loss in clinical trials of glaucoma treatment. Ophthomology, 106(2):391–395, 1999.

    Article  Google Scholar 

  14. S. Keerthi, S. Shevade, C. Bhattacharyya, and K. Murthy. Improvements to platt’s SMO algorithm for SVM classifier design. Technical report, Dept. of CSA, Banglore, India, 1999.

    Google Scholar 

  15. J.R. Landis and G.G. Koch. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics, 33(2):363–374, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. Leitman, J. Eng, J. Katz, and H.A. Quigley. Neural networks for visual field analysis: how do they compare with other algorithms. J Glaucoma, 8:77–80, 1999.

    Google Scholar 

  17. M.C. Leske, A. Heijl, L. Hyman, and B. Bengtsson. Early manifest glaucoma trial: design and baseline data. Ophthomology, 106(11):2144–2153, 1999.

    Article  Google Scholar 

  18. S. Mandava, M. Zulauf, T. Zeyen, and J. Caprioli. An evaluation of clusters in the glaucomatous visual field. American J. of Ophthalmol., 116(6):684–691, 1993.

    Google Scholar 

  19. R.K. Morgan, W.J. Feuer, and D.R. Anderson. Statpac 2 glaucoma change probability. Archive of Ophthalmol., 109:1690–1692, 1991.

    Google Scholar 

  20. K. Nouri-Mahdavi, L. Brigatti, M. Weitzman, and J. Caprioli. Comparison of methods to detect visual field progression in glaucoma. Ophthomology, 104(8):1228–1236, 1997.

    Google Scholar 

  21. J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  22. S.D. Smith, J. Katz, and H.A. Quigly. Analysis of progressive change in automated visual fields in glaucoma. Investigative Ophthomology and Vision Science, 37(7):1419–1428, 1996.

    Google Scholar 

  23. P.G.D. Spry, A.B. Bates, C.A. Johnson, and B.C. Chauhan. Simulation of longitudinal threshold visual field data. Investigative Ophthomology and Vision Science, 41(8):2192–2200, 2000.

    Google Scholar 

  24. J. Weber and H. Ulrich. A perimetric nerve fiber bundle map. International Ophthalmology, 15:193–200, 1991.

    Article  Google Scholar 

  25. C.J. Wild and G.A.F. Weber. Introduction to probability and statistics. Department of Statistics, University of Auckland, New Zealand, 1995.

    Google Scholar 

  26. J.M. Wild, M.K. Hussey, J.G. Flanagan, and G.E. Trope. Pointwise topographical and longitudinal modeling of the visual field in glaucoma. Investigative Ophthomology and Vision Science, 34(6):1907–1916, 1993.

    Google Scholar 

  27. J.M. Wild, N. Hutchings, M.K. Hussey, J.G. Flanagan, and G.E. Trope. Pointwise univariate linear regression of perimetric sensitivity against follow-up time in glaucoma. Ophthomology, 104(5):808–815, 1997.

    Google Scholar 

  28. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco, CA, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Turpin, A., Frank, E., Hall, M., Witten, I.H., Johnson, C.A. (2001). Determining Progression in Glaucoma Using Visual Fields. In: Cheung, D., Williams, G.J., Li, Q. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2001. Lecture Notes in Computer Science(), vol 2035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45357-1_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45357-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41910-5

  • Online ISBN: 978-3-540-45357-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics