Skip to main content

Perturbation Theory for Evolutionary Algorithms: Towards an Estimation of Convergence Speed

  • Conference paper
Parallel Problem Solving from Nature PPSN VI (PPSN 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1917))

Included in the following conference series:

Abstract

When considering continuous spaces EA, a convenient tool to model these algorithms is perturbation theory. In this paper we present preliminary results, derived from Freidlin-Wentzell theory, related to the convergence of a simple EA model. The main result of this paper yields a bound on sojourn times of the Markov process in subsets centered around the maxima of the fitness function. Exploitation of this result opens the way to convergence speed bounds with respect to some statistical measures on the fitness function (likely related to irregularity).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. I. Freidlin, A. D. Wentzell, “Random perturbations of dynamical systems.” Trad, de: “Fluktuatsii u Dinamicheskikh Sistemakh Pod Deistviem Malykh Sluchainykh Vozmushchenii”. Springer, 1984.

    Google Scholar 

  2. M. Jerrum, “Mathematical Foundations of the Markov Chain Monte Carlo Method”. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, B. Reed (Eds.), Probabilistic Methods for Algorithmic Discrete Mathematics, Springer Verlag, 1998.

    Google Scholar 

  3. E. Aarts and P. Van Laarhoven, “Simulated annealing: a pedestrian review of the theory and some applications”. NATO, ASI Series, Vol. F30, Springer Verlag.

    Google Scholar 

  4. E. Lutton and J. Lévy Véhel, Some remarks on the optimization of Hölder functions with Genetic Algorithms, IEEE trans on Evolutionary computing, 1998, see also Inria Research Report No 2627.

    Google Scholar 

  5. B. Leblanc, and E. Lutton. Bitwise Regularity Coefficients as a Tool for Deception Analysis of a Genetic Algorithm, 1997, INRIA research report, RR-3274.

    Google Scholar 

  6. A. Agapie. Genetic algorithms: Minimal conditions for convergence. In Artificial Evolution, European Conference, AE 97. Nimes, France, October 1997,. Springer Verlag, 1997.

    Google Scholar 

  7. Lee Altenberg. The Schema Theorem and Price’s Theorem. In Foundation of Genetic Algorithms 3, 1995. ed. Darrell Whitley and Michael Vose. pp. 23–49. Morgan Kaufmann, San Francisco.

    Google Scholar 

  8. R. Cerf. Artificial Evolution, European Conference, AE 95, Brest, France, September 1995, Selected papers, volume Lecture Notes in Computer Science 1063, chapter Asymptotic convergence of genetic algorithms, pages 37–54. Springer Verlag, 1995.

    Google Scholar 

  9. Thomas E. Davis and Jose C. Principe. A Simulated Annealing Like Convergence Theory for the Simple Genetic Algorithm. In Proceedings of the Fourth International Conference on Genetic Algorithm, pages 174–182, 1991. 13–16 July.

    Google Scholar 

  10. O. François “An Evolutionary Strategy for Global Minimization and its Markov Chain Analysis IEEE transactions on evolutionary computation, septembre 1998

    Google Scholar 

  11. Evelyne Lutton. Genetic Algorithms and Fractals. In Evolutionary Algorithms in Engineering and Computer Science, K. Mietttinen, M. M. Mäkelä, P. Neittaan-maki, J. Périaux, Eds, John Wiley & Sons, 1999.

    Google Scholar 

  12. G. Rudolph. Asymptotical convergence rates of simple evolutionary algorithms under factorizing mutation distributions. In Artificial Evolution, European Conference, AE 97, Nimes, France, October 1997,. Springer Verlag, 1997.

    Google Scholar 

  13. A. Trouvé, Rough large deviation estimates for the optimal convergence speed exponent of generalized simulated annealing algorithms. 1993

    Google Scholar 

  14. M.D. Vose. Formalizing genetic algorithms. In Genetic Algorithms, Neural Networks and Simulated Annealing Applied to Problems in Signal, and Image processing. The institute of Electrical and Electronics Engineers Inc., 8th–9th May 1990. Kelvin Conference Centre, University of Glasgow.

    Google Scholar 

  15. Y. Landrin-Schweitzer, E. Lutton. Perturbation theory for Evolutionary Algorithms. Inria Research Report, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Landrin-Schweitzer, Y., Lutton, E. (2000). Perturbation Theory for Evolutionary Algorithms: Towards an Estimation of Convergence Speed. In: Schoenauer, M., et al. Parallel Problem Solving from Nature PPSN VI. PPSN 2000. Lecture Notes in Computer Science, vol 1917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45356-3_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45356-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41056-0

  • Online ISBN: 978-3-540-45356-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics