Skip to main content

Environment-Induced Decoherence and the Transition from Quantum to Classical

  • Conference paper
  • First Online:
Coherent atomic matter waves

Part of the book series: Les Houches - Ecole d’Ete de Physique Theorique ((LHSUMMER,volume 72))

Abstract

We study dynamics of quantum open systems, paying special attention to these aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced supers election (einselection) in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the “standard lore” to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law - it is shown - can be traced to the same phenomena that allow for the restoration of the correspondence principle in decohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.H. Zurek, Phys. Rev. D 24 (1981) 1516–1524.

    Article  ADS  MathSciNet  Google Scholar 

  2. W.H. Zurek, Phys. Rev. D 26 (1982) 1862–1880.

    Article  ADS  MathSciNet  Google Scholar 

  3. W.H. Zurek, Progr. Theor. Phys. 89 (1993) 281–302.

    Article  ADS  MathSciNet  Google Scholar 

  4. W.H. Zurek, S. Habib and J.P. Paz, Phys. Rev. Lett. 70 (1993) 1187–1190; J.R. Anglin and W.H. Zurek, Phys. Rev. D 53 (1996) 7327–7335.

    Article  ADS  Google Scholar 

  5. M.R. Gallis, Phys. Rev. A 53 (1996) 655–660; M. Tegmark and H.S. Shapiro, Phys. Rev. E 50 2538–2547 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J.-M. Raimond and S. Haroche, Phys. Rev. Lett. 77 (1996) 4887–4890.

    Article  ADS  Google Scholar 

  7. C.C. Cheng and M.G. Raymer, Phys. Rev. Lett. 82 (1999) 4802.

    Article  ADS  Google Scholar 

  8. C.J. Myatt et al., Nat 403 (2000) 269.

    Article  ADS  Google Scholar 

  9. H. Ammann, R. Gray, I. Shvarchuk and N. Christensen, Phys. Rev. Lett. 80 (1998) 4111.

    Article  ADS  Google Scholar 

  10. B.G. Klappauf, W.H. Oskay, D.A. Steck and M.G. Raizen, Phys. Rev. Lett. 81 (1998) 1203; Erratum in Phys Rev. Lett. 82 (1999) 241.

    Article  ADS  Google Scholar 

  11. C.H. Bennett, Phys. Today 48, No. 10 (1995); C.H. Bennett and D.P. DiVincenzo, Nat 404 (2000) 247.

    Google Scholar 

  12. W.K. Wootters and W.H. Zurek, Nat 299 (1982) 802.

    Article  ADS  Google Scholar 

  13. D. Dieks, Phys. Lett. A 92 (1982) 271.

    Article  ADS  Google Scholar 

  14. W.H. Zurek, Phys. Today 44 (1991) 36.

    Article  Google Scholar 

  15. M. Tegmark, Phys. Rev. E 61 (2000) 4194.

    Article  ADS  Google Scholar 

  16. W.H. Zurek, Phys. Scr. T 76 (1998) 186, also available at [quant-ph/9802054].

    Article  ADS  MathSciNet  Google Scholar 

  17. W.H. Zurek, Phil. Trans. R. Soc. Lond. A 356 (1998) 1793, also available at [quant-ph/9805065].

    Article  ADS  MathSciNet  Google Scholar 

  18. J. von Neumann, Measurement and reversibility and The measuring process, Chapters V and VI if Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932); English translation by R.T. Beyer, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, Princeton, 1955).

    MATH  Google Scholar 

  19. Monroe, C., Meekhof, D.M., King, B.E., and Wineland, D.J., Sci 272 (1996) 1131–1136.

    Article  ADS  MathSciNet  Google Scholar 

  20. Everett III, H., Rev. Mod. Phys. 29 (1957) 454.

    Article  ADS  MathSciNet  Google Scholar 

  21. W.H. Zurek, in Physical Origins of Time Asymmetry, edited by J.J. Halliwell, J. Pérez-Mercader and W.H. Zurek (Cambridge University Press, Cambridge, 1994) pp. 175–212.

    Google Scholar 

  22. W.H. Zurek, Information transfer in quantum measurements, in Quantum Optics, Experimental Gravity, and the Measurement Theory, edited by P. Meystre and M.O. Scully (Plenum, New York, 1983) pp. 87–116.

    Google Scholar 

  23. D. Bohm, Quantum Theory, (Prentice-Hall, Engelwood Cliffs, 1951).

    Google Scholar 

  24. H. Rauch, Phys. Scr. T76 (1998) 24.

    Article  ADS  Google Scholar 

  25. T. Pfau et al., Phys. Rev. Lett. 73 (1994) 1223.

    Article  ADS  Google Scholar 

  26. M.S. Chapman et al., Phys. Rev. Lett. 75 (1995) 3783.

    Article  ADS  Google Scholar 

  27. W.H. Zurek (2000) (in preparation).

    Google Scholar 

  28. S. Lloyd, Phys. Rev. A 55 (1996) 1613.

    Article  ADS  MathSciNet  Google Scholar 

  29. B. Schumacher, Phys. Rev. A 54 (1996) 2614.

    Article  ADS  Google Scholar 

  30. R. Landauer, Phil Trans. R. Soc. 353 (1995) 367; also, in Proc. of the Drexel-4 Symposium on Quantum Nonintegrability: Quantum-Classical Correspondence, edited by D.H. Feng and B.-L. Hu (World Scientific, Singapore, 1998); W.G. Unruh, Phys. Rev A. 51 (1995) 992; I.L. Chuang, R. Laflamme, P. Shor and W.H. Zurek, Sci 270 (1995) 1633–1635.

    Article  ADS  MathSciNet  Google Scholar 

  31. H.D. Zeh, Found. Phys. 3 (1973) 109.

    Article  ADS  Google Scholar 

  32. H.D. Zeh, The Physical Basis of the Direction of Time (Springer, Berlin, 1989).

    Google Scholar 

  33. A. Albrecht, Phys. Rev. D 46 (1992) 5504.

    Article  ADS  Google Scholar 

  34. A. Albrecht, Phys. Rev. D 48 (1993) 3768.

    Article  ADS  MathSciNet  Google Scholar 

  35. D.F. Walls and G.J. Milburn, Quant. Opt. (Springer Verlag, Berlin, 1994).

    Google Scholar 

  36. S. Chaturvedy and F. Shibata, Z. Phys. B35 (1979) 297, see also M. Desposito and S.H. Hernandez, Physica 227A (1996) 248.

    ADS  Google Scholar 

  37. B.L. Hu, J.P. Paz and Y. Zhang, Phys. Rev. D 45 (1992) 2843.

    Article  ADS  MathSciNet  Google Scholar 

  38. A. J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg and W. Zwerger, Rev. Mod. Phys. 59 (1987) 1.

    Article  ADS  Google Scholar 

  39. J.P. Paz, in Physical Origin of Time Asymmetry, edited by J.J. Halliwell, J. Pérez-Mercader and W.H. Zurek (Cambridge University Press, 1992) pp. 213–220.

    Google Scholar 

  40. A.O. Caldeira and A.J. Leggett, Physica 121A, (1983) 587–616; Phys. Rev. A 31 (1985) 1059.

    ADS  MathSciNet  Google Scholar 

  41. W.G. Unruh and W.H. Zurek, Phys. Rev. D 40 (1989) 1071–1094.

    Article  ADS  MathSciNet  Google Scholar 

  42. F. Haake and R. Reibold, Phys. Rev. 32 (1985) 2462.

    Article  ADS  Google Scholar 

  43. B.L. Hu, J.P. Paz, and Y. Zhang, Phys. Rev. D 47 (1993) 1576.

    Article  ADS  MathSciNet  Google Scholar 

  44. H. Grabert, P. Shramm and G.L. Ingold, Phys. Rep. 168 (1988) 115.

    Article  ADS  MathSciNet  Google Scholar 

  45. L. Dávila Romero and J.P. Paz, Phys. Rev. A 55 (1997) 4070.

    Article  ADS  MathSciNet  Google Scholar 

  46. R.P. Feynman and F.L. Vernon, Ann. Phys. 24 (1963) 118.

    Article  ADS  MathSciNet  Google Scholar 

  47. J.P. Paz, S. Habib and W.H. Zurek, Phys. Rev. D 47 (1993) 488.

    Article  ADS  Google Scholar 

  48. E.P. Wigner, Phys. Rev. 40 (1932) 749. For a review, see M. Hillery, R.F. O’Connell, M.O. Scully and E.P. Wigner, Phys. Rep. 106 121 (1984).

    Article  MATH  ADS  Google Scholar 

  49. G. Lindblad, Comm. Math. Phys. 40 (1976) 119–130.

    Article  ADS  MathSciNet  Google Scholar 

  50. B.M. Garraway, Phys. Rev. A 55 (1997) 4636; ibid A 55 (1997) 2290.

    Article  ADS  Google Scholar 

  51. C. Anastopoulos and B.L. Hu, [e-print quant-ph/9901078].

    Google Scholar 

  52. W.H. Zurek, in Frontiers of Non-equilibrium Statistical Mechanics, edited by G.T. Moore and M.O. Scully (Plenum, New York, 1986) pp. 145–149.

    Google Scholar 

  53. W.H. Zurek, S. Habib and J.P. Paz, Phys. Rev. Lett. 70 (1993) 1187.

    Article  ADS  Google Scholar 

  54. J.P. Paz and W.H. Zurek, Phys. Rev. Lett. 82 (1999) 5181.

    Article  ADS  Google Scholar 

  55. J.R. Anglin, J.P. Paz and W.H. Zurek, Phys. Rev. A 53 (1997) 4041.

    Article  ADS  Google Scholar 

  56. M.R. Gallis and G.N. Fleming, Phys. Rev. A 42 (1990) 38; A 43 (1991) 5778; M.R. Gallis, Phys. Rev. A 48 (1993) 1023.

    Article  ADS  Google Scholar 

  57. J. Wisdom, S.J. Peale and F. Maignard, Icarus 58 (1984) 137; see also J. Wisdom, Icarus 63 (1985) 272.

    Article  ADS  Google Scholar 

  58. J. Laskar, Nat 338 (1989) 237.

    Article  ADS  Google Scholar 

  59. G.J. Sussman and J. Wisdom, Sci 257 (1992) 56–62.

    Article  ADS  MathSciNet  Google Scholar 

  60. W.H. Zurek and J.P. Paz, Phys. Rev. Lett. 72 (1994) 2508–2511; ibid 75 (1995) 351.

    Article  ADS  Google Scholar 

  61. W.H. Zurek and J.P. Paz, Physica D83 (1995) 300.

    Google Scholar 

  62. see selected papers in Casati, G., and Chrikov, B., Quantum Chaos (Cambridge University Press, Cambridge, 1995).

    Book  Google Scholar 

  63. G.P. Berman and G.M. Zaslavsky, Physica A 91 (1978) 450.

    Article  ADS  MathSciNet  Google Scholar 

  64. S. Habib, K. Shizume, and W.H. Zurek, Phys. Rev. Lett. 80 (1998) 4361.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  65. E. Ott, T.M. Antonsen and J. Hanson, Phys. Rev. Lett. 35 (1984) 2187; T. Dittrich and R. Graham, Phys. Rev. A 42 (1990) 4647, and references therein.

    Article  ADS  Google Scholar 

  66. This point of view is related to the one expressed by C. Caves et al. who emphasize on “hipersensitivity to perturbations” as the defining aspect of quantum chaos. See C. Caves and R. Schack, Hypersensitivity to perturbation: An information-theoretical characterization of classical and quantum chaos, in Quantum Communication, Computing, and Measurement, edited by O. Hirota, A.S. Holevo and C.M. Caves (Plenum Press, New York, 1997) pp. 317–330. This criterion was introduced by A. Peres (see A. Peres, Quantum Theory Concepts and Methods (Kluger, 1995)).

    Google Scholar 

  67. K. Shiokawa and B.L. Hu, Phys. Rev. E 52 (1995) 2497.

    Article  ADS  MathSciNet  Google Scholar 

  68. P.A. Miller and S. Sarkar, Phys. Rev. E 58 (1998) 4217; E 60 (1999) 1542.

    Article  ADS  Google Scholar 

  69. A.K. Pattanayak, Phys. Rev. Lett. 83 (2000) 4526.

    Article  ADS  Google Scholar 

  70. H. Pastawski, C Usaj and P. Levstein, “Quantum chaos: an answer to the Boltzmann-Loschmidt controversy?”, preprint Famaf (2000); for interesting related experimental work using NMR techniques see also H. Pastawski, C Usaj and P. Levstein, Chem. Phys. Lett. 261 (1996) 329.

    Google Scholar 

  71. D. Monteoliva and J.P. Paz (2000) (to appear).

    Google Scholar 

  72. M. Gell-Mann and J.B. Hartle, in Complexity, Entropy, and the Physics of Information, edited by W.H. Zurek (Addison-Wesley, Reading, 1990).

    Google Scholar 

  73. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu, and H.D. Zeh, Deco-herence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996).

    Google Scholar 

  74. A. Steane, Phys. Rev. Lett. 77 (1996) 793; A. Steane, Proc. Roy. Soc. Lond. A 452 (1996) 2551.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  75. P. Shor, Phys. Rev. A 52 (1995) 2493.

    Article  ADS  Google Scholar 

  76. McWilliams and Sloane, “Theory of Error Correcting Codes” (Elsevier, Amsterdam, 1977).

    Google Scholar 

  77. R. Laflamme, C. Miquel, J.P. Paz and W.H. Zurek, Phys. Rev. Lett. 77 (1996) 198.

    Article  ADS  Google Scholar 

  78. J.P. Paz and W.H. Zurek, Proc. Roy. Soc. London A 454 (1998) 355.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  79. A.R. Calderbank, E.M. Rains, P.W. Shor and N.J.A. Sloane, Phys. Rev. Lett. 78 (1997) 405.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  80. D. Gottesman, Caltech Ph.D. Thesis, quant-ph, see also “Stabilizer codes and quantum error correction”, Preprint (1998) [quant-ph/9705052]; Phys. Rev. A 54 (1996) 1862.

    Article  ADS  MathSciNet  Google Scholar 

  81. E. Knill and R. Laflamme, Preprint [quant-ph/9608012]; Phys. Rev. A 55 (1997) 900.

    Article  ADS  MathSciNet  Google Scholar 

  82. R. Cleve and D. Gottesman, Phys. Rev. 56 (1997) 76.

    Article  ADS  Google Scholar 

  83. H. Pringe, MsC Thesis, Buenos Aires University (1997) (unpublished).

    Google Scholar 

  84. J.J. Halliwell, Phys. Rev. D 39 (1989) 2912; C. Kiefer, Class. Quantum Grav. 4 (1987) 1369; J.P. Paz and S. Sinha, Phys. Rev. D 45 (1992) 2823; ibid D 44 (1991) 1038; for more recent discussion see F. Lombardo, F.D. Mazzitelli and D. Monteoliva, Phys. Rev. D (2000) (to appear).

    Article  ADS  MathSciNet  Google Scholar 

  85. J.F. Poyatos, J.I. Cirac and P. Zoller, Phys. Rev. Lett. 77 (1997) 4728.

    Article  ADS  Google Scholar 

  86. L. Davidovich, M. Brune, J.M. Raimond and S. Haroche, Phys. Rev. A 53 (1996) 1295.

    Article  ADS  Google Scholar 

  87. D. Dalvit and P. Maia Neto, Phys. Rev. Lett. 87 (2000) 798; see also [quant-ph/0004057].

    Article  ADS  Google Scholar 

  88. J. Anglin, Phys. Rev. Lett. 79 (1997) 6.

    Article  ADS  Google Scholar 

  89. D. Dalvit, J. Dziamarmaga and W.H. Zurek, Phys. Rev. A (2000) (to appear).

    Google Scholar 

  90. P. Mohanty, E.M.Q. Jariwada and R.A. Webb, Phys. Rev. Lett. 77 (1995) 3366; P. Mohanty and R.A. Webb, Phys. Rev. B 55 (1997) R13 452.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Kaiser C. Westbrook F. David

Rights and permissions

Reprints and permissions

Copyright information

© 2001 EDP Sciences, Springer-Verlag

About this paper

Cite this paper

Paz, J.P., Zurek, W.H. (2001). Environment-Induced Decoherence and the Transition from Quantum to Classical. In: Kaiser, R., Westbrook, C., David, F. (eds) Coherent atomic matter waves. Les Houches - Ecole d’Ete de Physique Theorique, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45338-5_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-45338-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41047-8

  • Online ISBN: 978-3-540-45338-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics