Skip to main content

Atom Interferometry

  • Conference paper
  • First Online:
Coherent atomic matter waves

Part of the book series: Les Houches - Ecole d’Ete de Physique Theorique ((LHSUMMER,volume 72))

  • 727 Accesses

Abstract

The first demonstrated atom interferometers, reported in 1991 by [1] and [2] were based on the diffraction of atoms with micro fabricated structures. This class of atom interferometers is analogous to optical interferometers, where slits or diffraction gratings have been used to divide and recombine beams of atoms. The gratings and slits can be either material structures or periodic light fields. Three months later, atom interferometers based on optical pulses of light were reported by [3], and by [4] In this class of interferometers, the spatial separation of the atoms is accomplished by the momentum recoil induced by the electromagnetic field used to drive the atoms from one internal state to another. Thus, the internal and external degrees of freedom are intimately connected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Carnal and J. Mlynek, Phys. Rev. Lett. 66 (1991) 2689.

    Article  ADS  Google Scholar 

  2. D.W. Keith, C.R. Ekstrom, Q.A. Turchette and D.E. Pritchard, Phys. Rev. Lett. 66 (1991) 2693.

    Article  ADS  Google Scholar 

  3. F. Riehle, Th. Kisters, A. Witte, J. Helmcke and Ch. Borde, Phys. Rev. Lett. 67(1991) 177.

    Article  ADS  Google Scholar 

  4. M. Kasevich and S. Chu, Phys. Rev. Lett. 67 (1991) 181–184.

    Article  ADS  Google Scholar 

  5. C.S. Adams, Contemp. Phys. 35 (1994) 1–19.

    Article  ADS  Google Scholar 

  6. N.F. Ramsey, Molecular Beams (Oxford University Press, Oxford, 1956).

    Google Scholar 

  7. L. Allen and J.H. Eberly, Optical Resonances and Two-Level Atoms (Dover, New York, 1975).

    Google Scholar 

  8. B. Young, M. Kasevich and S. Chu, in Atom Interferometry, edited by P. Berman (Academic Press, San Diego, 1997) pp. 363–406.

    Chapter  Google Scholar 

  9. C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics (Wiley, New York, 1977).

    Google Scholar 

  10. R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  11. We follow the presentation in C.S. Adams, O. Carnal and J. Mlynek, in Advances in Atomic, Molecular and Optical Physics 34, pp. 1–33.

    Google Scholar 

  12. The Feynman approach was used by M. Kasevich and S. Chu, Phys. Rev. Lett. 67 (1991) 181, in their calculation of the phase of an atom interferometer based on optical pulses where the different internal energy of the atomic states were considered. This treatment follows the tutorial by Storey and Cohen-Tannoudji [16].

    Article  ADS  Google Scholar 

  13. J. Ishikawa, F. Riehle, J. Helmcke and Ch. Bordé, Phys. Rev. A 49 (1994) 4794.

    Article  ADS  Google Scholar 

  14. R. Friedberg and S.R. Hartman, Phys. Rev. A 48 (1993) 1446.

    Article  ADS  Google Scholar 

  15. D.S. Weiss, B.C. Young and S. Chu, Appl. Phys. B 59 (1994) 217.

    Article  ADS  Google Scholar 

  16. P. Storey and C. Cohen-Tannoudji, J. Phys. II France 4 (1994) 1999.

    Article  Google Scholar 

  17. M. Kasevich and S. Chu, Appl. Phys. B 54 (1992) 321.

    Article  ADS  Google Scholar 

  18. Y.V. Baklanov, B.Y. Dubetsky and V.P. Chebotayev, Appl. Phys. 38 (1997) 159.

    Google Scholar 

  19. J.C. Bergquist, S.A. Lee and J.L. Hall, Phys. Rev. Lett. 38 (1997) 159.

    Article  ADS  Google Scholar 

  20. Ch. J. Bordé, C. Salomon, S. Avrillier, A. Van Lerberghe, C. Bréant, D. Bassi and G. Scoles, Phys. Rev. A 30 (1984) 1836.

    Article  ADS  Google Scholar 

  21. D.S. Weiss, B.C. Young and S. Chu, Phys. Rev. Lett. 70 (1993) 2706.

    Article  ADS  Google Scholar 

  22. See J. Schmiedmayer et al., in Atom Interferometry, edited by P. Berman (Academic Press, San Diego, 1997) pp. 1–83, and references contained within.

    Google Scholar 

  23. J.F. Clauser and S. Li, in Atom Interferometry, edited by P. Berman (Academic Press, San Diego, 1997) pp. 121–152.

    Chapter  Google Scholar 

  24. B. Dubetsky and P.R. Berman, in Atom Interferometry, edited by P. Berman (Academic Press, San Diego, 1997) pp. 407–468.

    Chapter  Google Scholar 

  25. V.P. Chebotayev, B. Dubetsky, A.P. Kazantsev and V.P. Yakovlev, J. Opt. Soc. Am. B 2 (1985) 1791.

    Article  ADS  Google Scholar 

  26. M.S. Chapman, C.R. Ekstrom, T.D. Hammond, J. Schmiedmayer, B.E. Tannian, S. Wehinger and D.E. Pritchard, Phys. Rev. A 51 (1995) R14.

    Article  ADS  Google Scholar 

  27. J.F. Clauser and S. Li, Phys. Rev. A 49 (1994) R2213.

    Article  ADS  Google Scholar 

  28. P.L. Gould, G.A. Ruff and D.E. Pritchard, Phys. Rev. Lett. 56 (1986) 827.

    Article  ADS  Google Scholar 

  29. D.M. Greenberger and A.W. Overhauser, Rev. Mod. Phys. 51 (1979) 43.

    Article  ADS  Google Scholar 

  30. J. Hensley, A. Peters and S. Chu, Rev. Sci. Instrum. XXXX (1997).

    Google Scholar 

  31. A.Peters, K.Y. Chung and S. Chu, Nat 400 (1999) 849.

    Article  ADS  Google Scholar 

  32. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. KĂ¼lz and K. Bergmann, Chem. Phys. Lett. 149 (1988) 463.

    Article  ADS  Google Scholar 

  33. C.J. Bordé, C. Salomon, S. Avrillier, A. Van Lerberghe, C. Bréant, D. Bassi and G. Scoles, Phys. Rev. A 30 (1984) 1836.

    Article  ADS  Google Scholar 

  34. P. Marte, P. Zoller and J.L. Hall, Phys. Rev. A 44 (1991) R4118.

    Article  ADS  Google Scholar 

  35. L.S. Goldner, C. Gerz, R.J.C. Spreeuw, S.L. Rolston, C.I. Westbrook, W.D. Phillips, P. Marte and P. Zoller, Phys. Rev. Lett. 72 (1994) 997.

    Article  ADS  Google Scholar 

  36. P. Pillet, C. Valentin, R.-L. Yuan and J. Yu, Phys. Rev. A 48 (1993) 845.

    Article  ADS  Google Scholar 

  37. J. Lawall and M. Prentiss, Phys. Rev. Lett. 72 (1994) 993.

    Article  ADS  Google Scholar 

  38. J. Oreg, F.T. Hioe and J.H. Eberly, Phys. Rev. A 29 (1984) 690.

    Article  ADS  Google Scholar 

  39. M. Weitz, B.C. Young and S. Chu, Phys. Rev. Lett. 73 (1994) 2563.

    Article  ADS  Google Scholar 

  40. M. Weitz, B.C. Young and S. Chu, Phys. Rev. A 50 (1994) 2438.

    Article  ADS  Google Scholar 

  41. J.R. Kuklinski, U. Gaubatz, F.T. Hioe and K. Bergmann, Phys. Rev. A 40 (1989) 6741.

    Article  ADS  Google Scholar 

  42. B. Young, M. Kasevich and S. Chu, in Atom Interferometry, edited by P. Berman (Academic Press, 1997) pp 363–406.

    Google Scholar 

  43. P.D. Featonby, G.S. Summy, J.L. Martin, H. Wu, K.P. Zetie, C.J. Foot and K. Burnett, Phys. Rev. A 53 (1996) 373.

    Article  ADS  Google Scholar 

  44. J. Schmiedmayer et al., in Atom Interferometry, edited by P. Berman (Academic Press, 1997) pp. 1–84.

    Google Scholar 

  45. H. Batelaan et al., in Atom Interferometry, edited by P. Berman (Academic Press, 1997) pp. 85–120.

    Google Scholar 

  46. T.L. Gastavson, P. Boyer and M.A. Kasevich, Phys. Rev. Lett. 78 (1997) 2046.

    Article  ADS  Google Scholar 

  47. T.L. Gastavson, Ph.D. Thesis (2000).

    Google Scholar 

  48. C.H. Rowe et al. Appl. Opt. 38 (1999) 2516.

    Article  ADS  Google Scholar 

  49. A. Lenefet. al., Phys. Rev. Lett. 78 (1997) 760.

    Article  ADS  Google Scholar 

  50. M.K. Oberthaler et al., Phys. Rev. A 54 (1997) 3165.

    Article  ADS  Google Scholar 

  51. See also the discussion in K. Sengstock, U. Sterr, G. Hennig, D. Bettermann, J.H. MĂ¼ller and W. Ertmer, Opt. Commun. 103 (1993) 73.

    Article  ADS  Google Scholar 

  52. H. HinderthĂ¼r et al., Phys. Rev. A 59 (1999) 2216.

    Article  ADS  Google Scholar 

  53. H. HinderthĂ¼r et al., Phys. Rev. A 56 (1997) 2085.

    Article  ADS  Google Scholar 

  54. M. Weitz, T. Heupel and T.W. Hänsch, Phys. Rev. Lett. 77 (1996) 2356.

    Article  ADS  Google Scholar 

  55. Brent Young, Ph.D. Thesis (1997).

    Google Scholar 

  56. M. Kozuma et al., Phys. Rev. Lett. 82 (1999) 871.

    Article  ADS  Google Scholar 

  57. Y.V. Baklanov, B.Y. Dubetsky and V.P. Chebotayev, Appl. Phys. 9 (1976) 171.

    Article  ADS  Google Scholar 

  58. J.C. Bergquist, S.A. Lee and J.L. Hall, Phys. Rev. Lett. 38 (1977) 159–162.

    Article  ADS  Google Scholar 

  59. C.J. Bordé, C. Salomon, S. Avrillier, A. Van Lerberghe, C. Bréant, D. Bassi and G. Scoles, Phys. Rev. A 30 (1984) 1836–1848.

    Article  ADS  Google Scholar 

  60. C.J. Bordé, In Laser Spectroscopy X, edited by M. Duclos, E. Giacobino, and G. Camy, World Scientific, Singapore (1992) pp. 239–245

    Google Scholar 

  61. M.E. Cage, R.F. Dziuba, R.E. Elmquist, B.F. Field et al., IEEE Trans. Instrum. Meas. 38 (1989) 284–289.

    Article  Google Scholar 

  62. S. Chu, L. Hollberg, J.E. Bjorkholm, A. Cable and A. Ashkin, Phys. Rev. Lett. 55 (1985) 48–51.

    Article  ADS  Google Scholar 

  63. C. Cohen-Tannoudji, B. Diu and F. Laloë, Quantum Mechanics (John Wiley & Sons, New York, 1977).

    Google Scholar 

  64. D.L. Farnham, R.S. Van Dyck Jr and P.B. Schwinberg, Phys. Rev. Lett. 75 (1995) 3598–3601.

    Article  ADS  Google Scholar 

  65. R. Friedberg and S.R. Hartmann, Phys. Rev. A 48 (1993) 1446–1472.

    Article  ADS  Google Scholar 

  66. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. KĂ¼lz and K. Bergmann, Chem. Phys. Lett. 149 (1988) 463–468.

    Article  ADS  Google Scholar 

  67. U. Gaubatz, P. Rudecki, S. Schiemann and K. Bergmann, J. Chem. Phys. 92 (1990) 5363–5376.

    Article  ADS  Google Scholar 

  68. G. Grynberg, J. DuPont-Roc, S. Haroche and C. Cohen-Tannoudji, J. Phys. (Paris) 34 (1973) 537–558.

    Google Scholar 

  69. J.M. Hensley, A. Peters and S. Chu (1996) (private communication).

    Google Scholar 

  70. J. Ishikawa, F. Riehle, J. Helmcke and C.J. Bordé, Phys. Rev. A 49 (1994) 4794–4825.

    Article  ADS  Google Scholar 

  71. M. Kasevich and S. Chu, Phys. Rev. Lett. 67 (1991) 181–184.

    Article  ADS  Google Scholar 

  72. M. Kasevich and S. Chu, Appl. Phys. B 54 (1992) 321–332.

    Article  ADS  Google Scholar 

  73. T. Kinoshita, IEEE Trans. Instrum. Meas. 44 (1995) 498–500.

    Article  Google Scholar 

  74. T. Kinoshita, Rep. Prog. Phys. 59 (1996) 1459–1492.

    Article  ADS  Google Scholar 

  75. E. Kruger, W. Nistler and W. Weirauch, IEEE Trans. Instrum. Meas. 44 (1995) 514.

    Article  Google Scholar 

  76. Th. Udem, J. Reichert, R. Holzwarth and T.W. Hänsch, Phys. Rev. Lett 82 (1999) 3568–3571.

    Article  ADS  Google Scholar 

  77. P. Marte, P. Zoller, and J.L. Hall, Phys. Rev. A 44 (1991) R4118–R4121.

    Article  ADS  Google Scholar 

  78. F. Nez, M.D. Plimmer, S. Bourzeix et al., Phys. Rev. Lett. 69 (1992) 2326–2329.

    Article  ADS  Google Scholar 

  79. G. Peter, F.J. Klopping, G.S. Sasagawa, J.E. Faller and T.M. Niebauer, J. Geophys. Res. 98 (1993) 4619–4626.

    Article  ADS  Google Scholar 

  80. A. Peters, K. Chung and S. Chu (1996) (private communication).

    Google Scholar 

  81. D.E. Pritchard (1996) (private communication).

    Google Scholar 

  82. N.F. Ramsey, Phys. Rev. 78 (1950) 695–699.

    Article  ADS  Google Scholar 

  83. N.F. Ramsey, Mol Beams (Oxford University Press, Oxford, 1956).

    Google Scholar 

  84. J.J. Sakurai, Modern Quant. Mech. (Addison-Wesley, Reading, 1994).

    Google Scholar 

  85. C.P. Slichter, Principles of Magnetic Resonance, 3rd Ed. (Springer-Verlag, 1990).

    Google Scholar 

  86. H. Stolzenberg, S. Becker, G. Bollen et al., Phys. Rev. Lett. 65 (1990) 3104–3107.

    Article  ADS  Google Scholar 

  87. R.S. Van Dyck Jr, P.B. Schwinberg and H.G. Dehmelt, Phys. Rev. Lett. 59 (1987) 26.

    Article  ADS  Google Scholar 

  88. K.-H. Weber and C.J. Sansonetti, Phys. Rev. A 35 (1987) 4650–4660.

    Article  ADS  Google Scholar 

  89. D.S. Weiss, B.C. Young and S. Chu, Phys. Rev. Lett. 70 (1993) 2706.

    Article  ADS  Google Scholar 

  90. D.S. Weiss, B.C. Young and S. Chu, Appl. Phys. B 59 (1994) 217–256.

    Article  ADS  Google Scholar 

  91. S.A. Werner, J.-L. Staudenmann and R. Colella, Phys. Rev. Lett. 42 (1979) 1103–1006.

    Article  ADS  Google Scholar 

  92. E.R. Williams, G.R. Jones Jr, S. Ye, R. Liu, H. Sasaki, P.T. Olsen, W.D. Phillips and H.P. Layer, IEEE Trans. Instrum. Meas. 38 (1989) 233–237.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Kaiser C. Westbrook F. David

Rights and permissions

Reprints and permissions

Copyright information

© 2001 EDP Sciences, Springer-Verlag

About this paper

Cite this paper

Chu, S. (2001). Atom Interferometry. In: Kaiser, R., Westbrook, C., David, F. (eds) Coherent atomic matter waves. Les Houches - Ecole d’Ete de Physique Theorique, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45338-5_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45338-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41047-8

  • Online ISBN: 978-3-540-45338-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics