Skip to main content

On the Computational Content of the Krasnoselski and Ishikawa Fixed Point Theorems

  • Conference paper
  • First Online:
Computability and Complexity in Analysis (CCA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2064))

Included in the following conference series:

Abstract

This paper is part of a case study in proof mining applied to non-effective proofs in nonlinear functional analysis. More speciffcally, we are concerned with the fixed point theory of nonexpansive selfmappings f of convex sets C in normed spaces. We study Krasnoselski and more general so-called Krasnoselski-Mann iterations which converge to fixed points of f under certain compactness conditions. But, as we show, already for uniformly convex spaces in general no bound on the rate of convergence can be computed uniformly in f. However, the iterations yield even without any compactness assumption and for arbitrary normed spaces approximate fixed points of arbitrary quality for bounded C (asymptotic regularity, Ishikawa 1976). We apply proof theoretic techniques (developed in previous papers) to non-effective proofs of this regularity and extract effective uniform bounds (with elementary proofs) on the rate of the asymptotic regularity. We first consider the classical case of uniformly convex spaces which goes back to Krasnoselski (1955) and show how a logically motivated modification allows to obtain an improved bound. Moreover, we get a completely elementary proof for a result which was obtained in 1990 by Kirk and Martinez-Yanez only with the use of the deep BrowderGöhde-Kirk fixed point theorem. In section 4 we report on new results ([29]) we established for the general case of arbitrary normed spaces including new quantitative versions of Ishikawa’s theorem (for bounded C) and its extension due to Borwein, Reich and Shafrir (1992) to unbounded sets C. Our explicit bounds also imply new qualitative results concerning the independence of the rate of asymptotic regularity from various data.

Basic Research in Computer Science, Centre of the Danish National Research Foundation.

Acknowledgment

I am grateful to Professor Jeff Zucker and my Ph.D. student Paulo Oliva for spotting a number of misprints and minor inaccuracies in an earlier version of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baillon, J, Bruck, R.E., The rate of asymptotic regularity is 0( 1/√n). Theory and applications of nonlinear operators of accretive and monotone type, Lecture Notes in Pure and Appl. Math. 178, pp. 51–81,Dekker, New York, 1996.

    Google Scholar 

  2. Bruck, R.E., A simple proof that the rate of asymptotic regularity of (I + T)=2 is O(1/√n). Recent advances on metric fixed point theory (Seville, 1995), pp. 11–18, Ciencias, 48, Univ. Sevilla, Seville, 1996.

    Google Scholar 

  3. Bonsall, F.F., Lectures on some fixed point theorems of functional analysis. Tata Institute of Fundamental Research. Bombay 1962.

    Google Scholar 

  4. Borwein, J., Reich, S., Shafrir, I., Krasnoselski-Mann iterations in normed spaces. Canad. Math. Bull. 35, pp. 21–28 (1992).

    MATH  MathSciNet  Google Scholar 

  5. Browder, F.E., Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. U.S.A. 54, pp. 1041–1044 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  6. Clarkson, J.A., Uniformly convex spaces. Trans. Amer. Math. Soc. 40, pp. 396–414 (1936).

    Article  MATH  MathSciNet  Google Scholar 

  7. Deimling, K., Nonlinear Functional Analysis. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, xiv+450 pp., 1985.

    MATH  Google Scholar 

  8. Edelstein, M., O’Brian, R.C., Nonexpansive mappings, asymptotic regularity and successive approximations. J. London Math. Soc. 17, pp. 547–554 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  9. Espinola, R., Kirk, W.A., Fixed points and approximated fixed points in product spaces. Preprint.

    Google Scholar 

  10. Feferman, S., Kreisel’s ‘Unwinding Program’. In: P. Odifreddi (ed.), Kreiseliana: about and around Georg Kreisel, A.K. Peters, Wellesley Massachusetts, pp. 247–273 (1996).

    Google Scholar 

  11. Goebel, K., Kirk, W.A., Iteration processes for nonexpansive mappings. In: Singh, S.P., Thomeier, S., Watson, B., eds., Topological Methods in Nonlinear Functional Analysis. Contemporary Mathematics 21, AMS, pp. 115–123 (1983).

    Google Scholar 

  12. Goebel, K., Kirk, W.A., Topics in metric fixed point theory. Cambridge studies in advanced mathematics 28, Cambridge University Press 1990.

    Google Scholar 

  13. Göhde, D., Zum Prinzip der kontraktiven Abbildung. Math. Nachrichten 30, pp. 251–258 (1965).

    Article  MATH  Google Scholar 

  14. Hanner, O., On the uniform convexity of L p and l p. Ark. Mat. 3, pp. 239–244 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  15. Henry, M.S., Schmidt, D., Continuity theorems for the product approximation operator. In: Law, A.G., Sahney, B.N. (eds.), Theory of Approximation with Applications, pp. 24–42, Academic Press, New York (1976).

    Google Scholar 

  16. Ishikawa, S., Fixed points and iterations of a nonexpansive mapping in a Banach space. Proc. Amer. Math. Soc. 59, pp. 65–71 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  17. Kirk, W.A., A Fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly 72, pp. 1004–1006 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  18. Kirk, W.A., Martinez-Yanez, C., Approximate fixed points for nonexpansive mappings in uniformly convex spaces. Annales Polonici Mathematici 51, pp. 189–193 (1990).

    MATH  MathSciNet  Google Scholar 

  19. Kirk, W.A., Nonexpansive mappings and asymptotic regularity. To appear in: Nonlinear Analysis.

    Google Scholar 

  20. Koethe, G., Topoplogische Lineare Räume. Springer-Verlag Berlin-Göttingen-Heidelberg, VI+456 pp., 1960.

    Google Scholar 

  21. Kohlenbach, U., Effective moduli from ine ective uniqueness proofs. An unwinding of de La Vallée Poussin’s proof for Chebyche approximation. Ann. Pure Appl. Logic 64, pp. 27–94 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  22. Kohlenbach, U., New effective moduli of uniqueness and uniform a-priori estimates for constants of strong unicity by logical analysis of known proofs in best approximation theory. Numer. Funct. Anal. and Optimiz. 14, pp. 581–606 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  23. Kohlenbach, U., Analysing proofs in analysis. In: W. Hodges, M. Hyland, C. Steinhorn, J. Truss, editors, Logic: from Foundations to Applications. European Logic Colloquium (Keele, 1993), pp. 225–260, Oxford University Press (1996).

    Google Scholar 

  24. Kohlenbach, U., Mathematically strong subsystems of analysis with low rate of growth of provably recursive functionals. Arch. Math. Logic 36, pp. 31–71 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  25. Kohlenbach, U., Proof theory and computational analysis. Electronic Notes in Theoretical Computer Science 13, Elsevier (http://www.elsevier.nl/locate/entcs/volume13.html), 34 pages (1998).

  26. Kohlenbach, U., Elimination of Skolem functions for monotone formulas in analysis. Arch. Math. Logic 37, pp. 363–390 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  27. Kohlenbach, U., Arithmetizing proofs in analysis. In: Larrazabal, J.M. et al. (eds.), Proceedings Logic Colloquium 96 (San Sebastian), Springer Lecture Notes in Logic 12, pp. 115–158 (1998).

    Google Scholar 

  28. Kohlenbach, U., Things that can and things that can’t be done in PRA. Ann. Pure Appl. Logic 102, pp. 223–245 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  29. Kohlenbach, U., A quantitative version of a theorem due to Borwein-Reich-Shafrir. Submitted.

    Google Scholar 

  30. Kohlenbach, U., Oliva, P., Effective bounds on strong unicity in L1-approximation. Preprint 30pp. (2001).

    Google Scholar 

  31. Krasnoselski, M. A., Two remarks on the method of successive approximation. Usp. Math. Nauk (N.S.) 10, pp. 123–127 (1955) (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kohlenbach, U. (2001). On the Computational Content of the Krasnoselski and Ishikawa Fixed Point Theorems. In: Blanck, J., Brattka, V., Hertling, P. (eds) Computability and Complexity in Analysis. CCA 2000. Lecture Notes in Computer Science, vol 2064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45335-0_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-45335-0_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42197-9

  • Online ISBN: 978-3-540-45335-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics