Advertisement

Evolutionary Search for Smooth Maps in Motor Control Unit Calibration

  • Jan Poland
  • Kosmas Knödler
  • Alexander Mitterer
  • Thomas Fleischhauer
  • Frank Zuber-Goos
  • Andreas Zell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2264)

Abstract

We study the combinatorial optimization task of choosing the smoothest map from a given family of maps, which is motivated from motor control unit calibration. The problem is of a particular interest because of its characteristics: it is NP-hard, it has a direct and important industrial application, it is easy-to-state and it shares some properties of the wellknown Ising spin glass model. Moreover, it is appropriate for the application of randomized algorithms: for local search heuristics because of its strong 2-dimensional local structure, and for Genetic Algorithms since there is a very natural and direct encoding which results in a variable alphabet. We present the problem from two points of view, an abstract view with a very simple definition of smoothness and the real-world application. We run local search, Genetic and Memetic Algorithms. We compare the direct encoding with unary and binary codings, and we try a 2-dimensional encoding. For a simple smoothness criterion, the Memetic Algorithm clearly performs best. However, if the smoothness citerion is more complex, the local search needs many function evaluations. Therefore we prefer the pure Genetic Algorithm for the application.

Keywords

Genetic Algorithm NP-hard Control Unit Calibration Variable Alphabet Coding Hybrid GA Smooth Maps Combinatorial Optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mitterer. Optimierung vielparametriger Systeme in der Antriebsentwicklung, Statistische Versuchsplanung und Künstliche Neuronale Netze in der Steuergeräteauslegung zur Motorabstimmung. PhD thesis, Lehrstuhl für Meßsystem-und Sensortechnik, TU München, 2000.Google Scholar
  2. 2.
    C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact ground states of Ising spin glasses: New experimental results witha branchand cut algorithm. Journal of Statistical Physics, 80:487–496, 1995.zbMATHCrossRefGoogle Scholar
  3. 3.
    J. Poland. Finding smoothmaps is NP-complete. Preprint, 2001.Google Scholar
  4. 4.
    F. Barahona. On the computational complexity of ising spin glass model. J.Phys:A: Math.Gen., 15:3241–3253, 1982.CrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.Google Scholar
  6. 6.
    J. Holland. Adaptions in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press, 1975.Google Scholar
  7. 7.
    T. N. Bui and B. R. Moon. On multidimensional encoding/crossover. In 6th International Conference on Genetic Algorithms, pages 49–56, 1995.Google Scholar
  8. 8.
    J. Poland, K. Knödler, and A. Zell. On the efficient arrangement of given points in a rectangular grid. In E. J. W. Boers et al., editor, Applications of Evolutionary Computation (LNCS 2037), pages 110–119, 2001.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Jan Poland
    • 1
  • Kosmas Knödler
    • 1
  • Alexander Mitterer
    • 1
  • Thomas Fleischhauer
    • 1
  • Frank Zuber-Goos
    • 1
  • Andreas Zell
    • 1
  1. 1.WSI-RAUniversität TübingenTübingenGermany

Personalised recommendations