Skip to main content

Gas Concentration Effects on Secondary Metabolite Production by Plant Cell Cultures

  • Chapter
  • First Online:
Plant Cells

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 72))

Abstract

One aspect of secondary metabolite production that has been studied relatively infrequently is the effect of gaseous compounds on plant cell behavior. The most influential gases are believed to be oxygen, carbon dioxide and other volatile hormones such as ethylene and methyl jasmonate. Organic compounds of interest include the promising antimalarial artemisinin known as “qing hao su” in China where it has been a folk remedy for centuries) that is produced by Artemisia annua (sweet wormwood) and taxanes used for anticancer therapy that are produced by species of Taxus (yew). The suspension cultures of both species were grown under a variety of dissolved gas conditions in stoppered culture flasks and under conditions of continuous headspace flushing with known gas mixtures. An analysis is presented to show the culture conditions are such that equilibrium between the culture liquid and gas head-space is assured. The growth rate of the cells and their production rates of artemisinin and paclitaxel were determined. These and other parameters are correlated as functions of the gas concentrations. Interdependence of ethylene and methyl jasmonate is also explored with respect to regulation of secondary metabolite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Staba EJ (ed) (1980) Plant tissue culture as a source of biochemicals. CRC Press, Boca Raton, Florida

    Google Scholar 

  2. Buitelaar RM, Tramper J (1992) J Biotechnol 23:111

    Article  CAS  Google Scholar 

  3. Curtin ME (1983) Bio/technology 1:649

    Article  Google Scholar 

  4. Dörnenburg H, Knorr D (1995) Enzyme Microb Technol 17:674

    Article  Google Scholar 

  5. Sahai O, Knuth M (1985) Biotechnol Prog 1:1

    Article  Google Scholar 

  6. Taticek RA, Moo-Young M, Legge RL (1991) Plant Cell Tissue Organ Culture 24:139

    Article  Google Scholar 

  7. Walton NJ (1992) Chem Br 28:525

    CAS  Google Scholar 

  8. Morris P, Scragg AH, Stafford A, Fowler MW (eds) (1986) Secondary metabolism in plant cell cultures. Cambridge University Press, Cambridge

    Google Scholar 

  9. Payne GF, Bringi V, Prince CL, Shuler ML (1992) Plant cell and tissue culture in liquid systems. Hanser Publishers, Munich

    Google Scholar 

  10. Routian JB, Nickell LG (1956) US Patent 2 747 334

    Google Scholar 

  11. Bringi V, Kadkade PG, Prince CL, Schubmehl BF, Kane EJ, Roach B (1995) US Patent 5 407 816

    Google Scholar 

  12. Sanrou T, Mayumi Y, Kazuki I, Tae O, Masahiro A, Minoru K (1998) JP Patent 10 042 888A

    Google Scholar 

  13. Choi HK, Adams TL, Stahlhut RW, Kim SI, Yun JH, Song BK, Kim JH, Song JS, Hong SS, Lee HS (1999) US Patent 5 871 979

    Google Scholar 

  14. Flores HE, Vivanco JM, Loyola-Vargas VM (1999) Trends Plant Sci 4:220

    Article  Google Scholar 

  15. Fett Neto AG (ed) (1996) Plant cell culture production of secondary metabolites. CRC Press, Boca Raton, p 139

    Google Scholar 

  16. Nakagawa K, Fukui H, Tabata M (1986) Plant Cell Reports 5:69

    Article  CAS  Google Scholar 

  17. Obaata-Sasamoto H, Komamine A (1982) Suppression mechanism of DOPA accumulation in Stizolobium callus. In: Plant tissue culture 1982. Japanese Association for Plant Tissue Culture, Tokyo, p 345

    Google Scholar 

  18. Hashimoto T, Yamada Y (1986) Plant Physiol 81:619

    Article  CAS  Google Scholar 

  19. Whitaker RJ, Hashimoto T (1986) Production of secondary metabolites. In Evans DA, Sharp WR, Ammirato PV (eds) Handbook of plant tissue culture, vol 4. Macmillan Pub Co, New York, p 264

    Google Scholar 

  20. Deno H, Suga C, Morimoto T, Fujita Y (1987) Plant Cell Rep 6:197

    Article  CAS  Google Scholar 

  21. Constabel F (1990) Planta Med 56:421

    Article  CAS  Google Scholar 

  22. Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) In Vitro Cell Devel Biol Plant 32:272

    Article  CAS  Google Scholar 

  23. Roberts SC, Shuler ML (1997) Curr Opin Biotechnol 8:154

    Article  CAS  Google Scholar 

  24. Crueger W, Crueger A (1984) Biotechnology: a textbook of industrial microbiology. Science Tech, Madison, p 206

    Google Scholar 

  25. Haigh JR, Linden JC (1989) Plant Cell Rep 8:475

    Article  CAS  Google Scholar 

  26. Haigh JR, Linden JC (1991) Gen Eng Biotechnol 11:23

    Google Scholar 

  27. Mirjalili N, Linden JC (1996) Biotechnol Prog 12:110

    Article  CAS  Google Scholar 

  28. Mirjalili N, Linden JC (1995) Biotechnol Bioeng 48:123

    Article  CAS  Google Scholar 

  29. Phisalaphong M, Linden JC (1999) Ethylene and methyl jasmonate interaction and binding models for elicited biosynthetic steps of paclitaxel in suspension cultures of Taxus canadensis. In Kanellis AK, Chang C, Klee H, Bleecker AB, Pech JC, Grierson D (eds.) Biology and biotechnology of the plant hormone ethylene. Kluwer Academic Publishers, Dordrecht, p 85

    Google Scholar 

  30. Phisalaphong M, Linden JC (1999) Biotechnol Prog 15:1072

    Article  CAS  Google Scholar 

  31. Hulst AC, Tramper J, Brodelius P, Eijkenboom LJC, Luyben KCAM (1985) J Chem Tech Biotechnol 35B: 198

    CAS  Google Scholar 

  32. Hallsby GA (1984) MS thesis, Cornell University

    Google Scholar 

  33. Hallsby GA (1986) PhD dissertation, Cornell University

    Google Scholar 

  34. LaRue TAG, Gamborg OL (1971) Plant Physiol 48:394

    Article  CAS  Google Scholar 

  35. Thomas DDS, Murashige T (1979) In Vitro 15:654

    Article  CAS  Google Scholar 

  36. Zobel RW (1987) Environ Exp Bot 27:223

    Article  CAS  Google Scholar 

  37. Fujiwara K, Kozai T, Watanabe I (1987) J Agr Met 43:21

    Google Scholar 

  38. Salisbury FB, Ross CW (1992) Plant Physiology, 4th edn. Wadsworth Publishing Co., Belmont, CA

    Google Scholar 

  39. Beyer EM, Morgan PW, Yang SF (1984) Ethylene. In: Wilkins MB (ed) Advanced plant physiology. Pitman Press, Bath, UK

    Google Scholar 

  40. Lieberman M, Wang SY, Owens LD (1979) Plant Physiol 63:811

    Article  CAS  Google Scholar 

  41. Shuler ML, Sahai OP, Hallsby GA (1983) Ann NY Acad Sci 413:373

    Article  Google Scholar 

  42. Facchini PJ, DiCosmo F (1991) Biotechnol Bioeng 37:397

    Article  CAS  Google Scholar 

  43. Hsiao TY, Bacani FT, Carvalho EB, Curtis WR (1999) Biotechnol Prog 15:114

    Article  CAS  Google Scholar 

  44. Rijhwani SK, Shanks JV (1998) Biotechnol Prog 14:442

    Article  CAS  Google Scholar 

  45. Williams GRC, Doran PM (2000) Biotechnol Prog 16:391

    Article  CAS  Google Scholar 

  46. McKelvey SA, Gehrig JA, Hollar KA, Curtis WR (1993) Biotechnol Prog 9:317

    Article  CAS  Google Scholar 

  47. Perry RH, Chilton CH (1973) Chemical engineers handbook, 5th edn. McGraw-Hill, New York, pp 3–98

    Google Scholar 

  48. Weast RC (1985) CRC handbook of chemistry and physics, 65th edn. CRC Press Inc, Boca Raton, FL, p F–115

    Google Scholar 

  49. Hill CG (1977) An introduction to chemical engineering kinetics and reactor design, John Wiley & Sons, New York, p 451

    Google Scholar 

  50. Kobayashi Y, Fukui H, Tabata M (1989) Plant Cell Rep 8:255

    Article  CAS  Google Scholar 

  51. Tate JL, Payne GF (1991) Plant Cell Rep 10:22

    Article  CAS  Google Scholar 

  52. Su WW, Humphrey AE (1991) Biotechnol Lett 13:889

    Article  CAS  Google Scholar 

  53. Smith JM, Davison SW, Payne GF (1990) Biotechnol Bioeng 35:1088

    Article  CAS  Google Scholar 

  54. Fowler MW (1983) Commercial applications and economic aspects of mass plant-cell culture. In: Mantel SH, Smith H (eds) Plant biotechnology. Cambridge University Press, Cambridge, UK, p 3

    Google Scholar 

  55. Maurel B, Pareilleux A (1985) Biotechnol Lett 7:313

    Article  CAS  Google Scholar 

  56. Stuhlfauth T, Klug K, Fock HP (1987) Phytochemistry 26:2735

    Article  CAS  Google Scholar 

  57. Kim DI, Pedersen H, Chin CK (1991) Biotechnol Bioeng 38:331

    Article  CAS  Google Scholar 

  58. Smart NJ, Fowler MW (1981) Biotechnol Lett 3:171

    Article  Google Scholar 

  59. Abeles FB (1973) Ethylene in plant biology. Academic Press, New York, p 228

    Google Scholar 

  60. Freytag AH, Linden JC (1975) La Sucrerie Belge 94:429

    CAS  Google Scholar 

  61. Bagratishvili DG, Zaprometov MN (1988) Soobshch Akad Nauk Gruz SSR 131:385

    CAS  Google Scholar 

  62. Songstad KL, Giles J, Park D, Novakovski D, Epp L, Friasen L, Roewer I (1989) Plant Cell Rep 8:463

    Article  CAS  Google Scholar 

  63. Kobayashi Y, Hara M, Fukui H, Tabata M (1991) Phytochemistry 30:3605

    Article  CAS  Google Scholar 

  64. Kim DI, Pedersen H, Chin CK (1991) J Biotechnol 21:201

    Article  CAS  Google Scholar 

  65. Cho GH, Kim DI, Pedersen H, Chin CK (1988) Biotechnol Prog 4:184

    Article  CAS  Google Scholar 

  66. Luo XD, Shen CC (1987) Med Res Rev 7:29

    Article  CAS  Google Scholar 

  67. Klayman DL (1985) Science 228:1049

    Article  CAS  Google Scholar 

  68. Park JM, Hu WS, Staba EJ (1989) Biotechnol Bioeng 34:1209

    Article  CAS  Google Scholar 

  69. Tawfiq NK, Anderson LA, Roberts MF, Phillipson MF, Bray DH, Warhurst DC (1989) Plant Cell Rep 8:425

    Article  Google Scholar 

  70. Martinez BC, Staba EJ (1988) Adv Cell Culture 6:69

    CAS  Google Scholar 

  71. Bailey JE, Ollis DF (1986) Biochemical engineering fundamentals, 2nd edn. McGraw-Hill Book Co, New York, p285

    Google Scholar 

  72. Yegneswaran PK, Gray MR, Thompson BG (1990) Biotechnol Bioeng 36:92

    Article  CAS  Google Scholar 

  73. O’Connor DJ, Dobbins W (1966) J Sanit Div Proc ASCE 82:SA6

    Google Scholar 

  74. Haigh JR (1993) PhD dissertation, Colorado State University

    Google Scholar 

  75. Barmore CR, Wheaton TA (1978) HortScience 13:169

    Google Scholar 

  76. Choi MS, Kwak SS, Liu JR, Park YG, Lee MK, An NH (1995) Planta Med 61:264

    Article  CAS  Google Scholar 

  77. Gan FY, Peng LP, Zheng GZ (1996) Acta Bot Yunn 18:451

    Google Scholar 

  78. Griffin J, Hook I (1996) Planta Med 62:370

    Article  CAS  Google Scholar 

  79. Hirasuna TJ, Pestchanker LJ, Srinivasan V, Shuler ML (1996) Plant Cell Tissue Organ Culture 44:95

    Article  CAS  Google Scholar 

  80. Hoffman AM, Voelker CCJ, Franzen AT, Shiotani KS, Sandhu JS (1996) Phytochemistry 43:95

    Article  CAS  Google Scholar 

  81. Kitagawa I, Mahmud T, Kobayashi M, Roemantyo J, Shibuya H (1995) Chem Pharm Bull 43:365

    CAS  Google Scholar 

  82. Liu DI, Zhang GY, Wang X, Hu ZB (1997) J Plant Resour Environ 6:48

    Google Scholar 

  83. Xiang W, Zhang HJ, Ruan DC, Sun HD (1997) J Plant Resour Environ 6:56

    CAS  Google Scholar 

  84. Zhiri A, Jaziri M, Guo Y, Vanhaelen Fastre R, Vanhaelen M, Homes J, Yoshimatsu K, Shimomura K (1995) Biol Chem Hoppe-Seyler 376:586

    Google Scholar 

  85. Mei X, Lu M, Yu L, Hu D (1996) Med Chem Res 6:256

    CAS  Google Scholar 

  86. Chattopadhyay SK, Kulshrestha M, Saha GC, Sharma RP, Jain SP, Kumar S (1997) J Med Arom Plant Sci 19:17

    CAS  Google Scholar 

  87. Ketchum REB, Gibson DM, Croteau R, Shuler ML (1999) Biotechnol Bioeng 62:97

    Article  CAS  Google Scholar 

  88. Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Nature Biotechnol 14:1129

    Article  CAS  Google Scholar 

  89. Farmer EE (1994) Plant Mol Biol 26:1423

    Article  CAS  Google Scholar 

  90. Dammann C, Rojo E, Sanchez-Serrano JJ (1997) Plant J 11:773

    Article  CAS  Google Scholar 

  91. Blechert S, Brodschelm W, Hoelder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ, Zenk MH (1995) Proc Nat Acad Sci USA 92:4099

    Article  CAS  Google Scholar 

  92. Gundlach H, Mueller MJ, Kutchan TM, Zenk MH (1992) Proc Nat Acad Sci USA 89:2389

    Article  CAS  Google Scholar 

  93. Kauss H, Krause K, Jeblick W (1992) Biochem Biophys Res Comm 189:304

    Article  CAS  Google Scholar 

  94. Yazaki K, Takeda K, Tabata M (1997) Plant Cell Physiol 38:776

    CAS  Google Scholar 

  95. Tamari G, Borochov A, Atzorn R, Weiss D (1995) Physiol Plant 94:45

    Article  CAS  Google Scholar 

  96. Kutchan TM, Dittrich H, Bracher D, Zenk MH (1991) Tetrahedron 47:5954

    Article  Google Scholar 

  97. Yamada A, Shibuya N, Kodama O, Akatsuka T (1993) Biosci Biotechnol Biochem 57:405

    Article  CAS  Google Scholar 

  98. Ito Y, Kaku H, Shibuya N (1997) Plant J 12:347

    Article  CAS  Google Scholar 

  99. Cote F, Hahn MG (1994) Plant Mol Biol 26:1379

    Article  CAS  Google Scholar 

  100. Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T (1996) Plant Physiol 110:387

    CAS  Google Scholar 

  101. Kauss H, Jeblick W, Ziegler J, Krabler W (1994) Plant Physiol 105:89

    CAS  Google Scholar 

  102. Boller T, Gehri A, Mauch F, Vogeli U (1983) Planta 157:22

    Article  CAS  Google Scholar 

  103. Linden JC, Phisalaphong M (2000) Plant Sci 158:41

    Article  CAS  Google Scholar 

  104. Haigh JR (1988) MS thesis, Colorado State University

    Google Scholar 

  105. Sun X (1998) MS thesis Colorado State University

    Google Scholar 

  106. Mirjalili N (1997) PhD dissertation, Colorado State University

    Google Scholar 

  107. Phisalaphong M (1999) PhD dissertation, Colorado State University

    Google Scholar 

  108. Stanbury PF, Whitaker A (1984) Principles of fermentation technology. Pergamon Press, Oxford, p 95

    Google Scholar 

  109. Mizukami H, Ogawa T, Ohashi H, Ellis BE (1992) Plant Cell Rep 11:480

    Article  CAS  Google Scholar 

  110. Xu Y, Chang PL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant Cell 6:1077

    Article  CAS  Google Scholar 

  111. Berry AW, Cowan DSC, Harpham NVJ, Hemsley RJ, Novikova GV, Smith AR, Hall MA (1996) Plant Growth Regul 18:135

    Article  CAS  Google Scholar 

  112. Brailsford RW, Voesenek CJ, Blom CWP, Smith AR, Hall MA, Jackson MB (1993) Plant Cell Environ 16:1071

    Article  CAS  Google Scholar 

  113. Schaller GE, Gamble RL, Randlett M, Zhao X, Qu X (2000) Ethylene receptors and the two-component paradigm. In: Walker J, Randall D (eds) Current topics in plant biochemistry, physiology and molecular biology. University of Missouri, Columbia, p 68

    Google Scholar 

  114. Rodriquez FI, Esch JJ, Hall AE, Binder BM, Schaller GE, Bleeker AB (1999) Science 283:996

    Article  Google Scholar 

  115. Clark KL, Larsen PB, Chang C (1998) Proc Nat Acad Sci USA 95:5401

    Article  CAS  Google Scholar 

  116. Chang C, Stewart RC (1998) Plant Physiol 117:723

    Article  CAS  Google Scholar 

  117. Weber H, Vick BA, Farmer EE (1997) Proc Nat Acad Sci USA 94:10473

    Article  CAS  Google Scholar 

  118. Fauth M, Schweizer P, Buchala A, Markst C, Riederer M, Kato T, Kauss H (1998) Plant Physiol 117:1380

    Article  Google Scholar 

  119. Franke R, Fry SC, Kauss H (1998) Plant Cell Rep 17:379

    Article  CAS  Google Scholar 

  120. Sessa G, Raz V, Savaldi S, Fluhr R (1996) Plant Cell 8:2223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Linden, J.C., Haigh, J.R., Mirjalili, N., Phisaphalong, M. (2001). Gas Concentration Effects on Secondary Metabolite Production by Plant Cell Cultures. In: Zhong, J.J., et al. Plant Cells. Advances in Biochemical Engineering/Biotechnology, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45302-4_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45302-4_2

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41849-8

  • Online ISBN: 978-3-540-45302-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics