Advertisement

Hard Sets and Pseudo-random Generators for Constant Depth Circuits

  • Manindra Agrawal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2245)

Abstract

It is shown that the existence of a set in E that is hard for constant depth circuits of subexponentialsize is equivalent to the existence of a true pseudo-random generator against constant depth circuits.

Keywords

Constant Depth Annual IEEE Symposium Majority Gate Depth Circuit Parity Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BFNW93.
    L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307–318, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  2. BM84.
    M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing, 13:850–864, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  3. GL89.
    O. Goldreich and L. A. Levin. A hardcore predicate for all one-way functions. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 25–32, 1989.Google Scholar
  4. Has86.
    J. Hastad. Computational limitations on small depth circuits. PhD thesis, Massachusetts Institute of Technology, 1986.Google Scholar
  5. Imp95.
    R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pages 538–545, 1995.Google Scholar
  6. IW97.
    R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 220–229, 1997.Google Scholar
  7. KL83.
    R. M. Karp and M. Luby. Monte-Carlo algorithms foe enumeration and reliability problems. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pages 56–64, 1983.Google Scholar
  8. Nis91.
    N. Nisan. Pseudo random bits for constant depth circuits. Combinatorica, 11(1):63–70, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  9. NW94.
    N. Nisan and A. Wigderson. Hardness vs. randomness. J.Comput.Sys. Sci., 49(2):149–167, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  10. STV99.
    M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR lemma. In Proceedings of Annual ACM Symposium on the Theory of Computing, pages 537–546, 1999.Google Scholar
  11. Yao82.
    A. C. Yao. Theory and applications of trapdoor functions. In Proceedings of Annual IEEE Symposium on Foundations of Computer Science, pages 80–91, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Manindra Agrawal
    • 1
  1. 1.Department of Computer ScienceIIT KanpurKanpurIndia

Personalised recommendations