Advertisement

Efficient Addition on Field Programmable Gate Arrays

  • Andreas Jakoby
  • Christian Schindelhauer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2245)

Abstract

We investigate average efficient adders for grid-based environments related to current Field Programmable Gate Arrays (FPGAs) and VLSI-circuits. Motivated by current trends in FPGA hardware design we introduce a new computational model, called the λwired grid model. The parameter λdescribes the degree of connectivity of the underlying hardware. This model covers among others two-dimensional cellular automata for λ = 0 and VLSI-circuits for λ = 1. To formalize input and output constraints of such circuits we use the notion of input and output schemas. It turns out that the worst case time and area complexity are highly dependent on the specific choice of I/O schemas. We prove that a set of regular schemas supports efficient algorithms for addition where time and area bounds match lower bounds of a broad class of I/O schemas.

We introduce new schemas for average efficient addition on FPGAs and show that addition can be done in expected time O(log log n) for the standard VLSI model and in expected time O(√log n) in the pure grid model. Furthermore, we investigate the rectangular area needed to perform addition with small error probability, called area with high probability. Finally, these results are generalized to the class of prefix functions.

Keywords

Boolean Function Field Programmable Gate Array Grid Model Logic Block Compact Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Actel Corporation, ProASIC TM500K Family, Product Spec., October 2000.Google Scholar
  2. 2.
    Atmel Corp.,AT 40K FPGAs with FreeRAM TM, Rev. 0896B-01/99, Prod. Spec., Jan. 1999.Google Scholar
  3. 3.
    M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E. Thompson, M. Wiener, Minimal key lengths for symmetric ciphers to provide adequate commercial security: A report by an ad hoc group of cryptographers and computer scientists, 1996, http://www.bsa.org.
  4. 4.
    R. Brent, H.T. Kung, A Regular Layout for Parallel Adders, IEEE Transaction on Computers, C-31, 1982, 260–264.MathSciNetCrossRefGoogle Scholar
  5. 5.
    W. P. Burleson, L. L. Scharf, Input/Output Design for VLSI Array Architectures, Proceedings VLSI’91, 8b2.1–10, 1991.Google Scholar
  6. 6.
    W. Carter, K. Duong, R. Freeman, H. Hsieh, J. Ja, J. Mahoney, L. Ngo, S. Sze, A User Programmable Gate Array, Proc. CICC’86, 1986, 233–235.Google Scholar
  7. 7.
    K. Compton, S. Hauck, Configurable Computing: A Survey of Systems and Software, North-western University, Dept. of ECE Technical Report, 1999.Google Scholar
  8. 8.
    I. David, R. Ginosar, M. Yoelli, An Efficient Implementation of Boolean Functions and Finite State Machines as Self-Timed Circuits, ACM SIGARCH, 1989, 91–104.Google Scholar
  9. 9.
    K. El-Ayat, A CMOS Electronically Configurable Gate Array, Proc. ISSCC, 1988, 76–77.Google Scholar
  10. 10.
    A. El Gamal, An Architecture for Electronically Configurable Gate Arrays, Proc. CICC’88, 1988, 15.4.1–15.4.4.Google Scholar
  11. 11.
    H. Hsieh, K. Duong, J. Ja, R. Kanazawa, L. Ngo, L. Tinkey, W. Carter, and R. Freeman, A Second Generation User Programmable Gate Array, Proc. CICC’87, 1987, 515–521.Google Scholar
  12. 12.
    A. Jakoby, Die Komplexität von Präfixfunktionen bezüglich ihres mittleren Zeitverhaltens, PhD dissertation, University of Lübeck, 1998.Google Scholar
  13. 13.
    A. Jakoby, The Average Time Complexity to Compute Prefix Functions in Processor Networks, Proc. 16th STACS, 1999, 78–89.Google Scholar
  14. 14.
    A. Jakoby, C. Schindelhauer, On the Complexity of Worst Case and Expected Time in a Circuit, Proc. 13th STACS, 1996, 295–306.Google Scholar
  15. 15.
    A. Jakoby, R. Reischuk Average Case Complexity of Unbounded Fanin Circuits, Proc. 15th Conference on Computational Complexity (CCC), 1999, 170–185.Google Scholar
  16. 16.
    A. Jakoby, R. Reischuk, C. Schindelhauer, Circuit Complexity: from the Worst Case to the Average Case, Proc. 26th SToC, 1994, 58–67.Google Scholar
  17. 17.
    A. Jakoby, R. Reischuk, C. Schindelhauer, S. Weis The Average Case Complexity of the Parallel Prefix Problem, Proc. 21st ICALP, 1994, 593–604.Google Scholar
  18. 18.
    R. Ladner and M. Fischer, Parallel prefix computation, J. ACM, 27 (4), 1980,831–838.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    J. Reif, Probabilistic Parallel Prefix Computation, Comp. Math. Applic. 26, 1993, 101–110.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. Tessier, W. Burleson, Reconfigurable Computing for Digital Signal Processing: A Survey, to appear in Y. Hen Hu (ed) Programmable Signal Processors, Marcel Dekker Inc., 2001Google Scholar
  21. 21.
    J. Ullman, Computational Aspects of VLSI, Computer Science Press, 1984.Google Scholar
  22. 22.
    J. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. Touati, P. Boucard, Programmable Active Memories: Reconfigurable Systems Come of Age, IEEE Trans. VLSI Systems 4 (1), 1996.Google Scholar
  23. 23.
    Xilinx Corp., XC4000E and XC4000X Series Field Programmable Gate Arrays, Prod. Spec., Version 1.6, 1999.Google Scholar
  24. 24.
    Xilinx Corp., Virtex-II Platform FPGA Data Sheet (DS031), Prod. Spec., Ver. 1.5, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Andreas Jakoby
    • 1
  • Christian Schindelhauer
    • 2
  1. 1.Institut für Theoretische InformatikMed. Universität zu LübeckGermany
  2. 2.Heinz Nixdorf Institute and Depart. of Mathematics and Computer ScienceUniv. PaderbornGermany

Personalised recommendations