Advertisement

Optimal, Output-Sensitive Algorithms for Constructing Upper Envelope of Line Segments in Parallel

  • Neelima Gupta
  • Sumit Chopra
  • Sandeep Sen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2245)

Abstract

In this paper we focus on the problem of designing very fast parallel algorithms for constructing the upper envelope of straight-line segments that achieve the O(n logH) work-bound for input size n and output size H. Our algorithms are designed for the arbitrary CRCW PRAM model. We first describe an O(log n · (logH + log log n)) time deterministic algorithm for the problem, that achieves O(n logH) work bound for H = Ω(log n). We present a fast randomized algorithm that runs in expected time O(logH · log n) with high probability and does O(n logH) work. For log H = Ω(log log n), we can achieve the running time of O(log H) while simultaneously keeping the work optimal. We also present a fast randomized algorithm that runs in Õ(log n/ log k) time with nk processors, k > logΩ(1) n. The algorithms do not assume any input distribution and the running times hold with high probability.

Keywords

Line Segment Convex Hull Output Size Motion Planning Problem Vertical Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing and C. K. Yap, Parallel computational geometry. in: Proc. 25th Annual Sympos. Found. Comput. Sci. (1985) 468–477; also: Algorithmica 3 (3) (1988) 293–327.Google Scholar
  2. 2.
    P. K. Aggarwal and M. Sharir, Davenport-Schinzel Sequences and their Geometric Applications. (1995).Google Scholar
  3. 3.
    S. Akl, Optimal algorithms for computing convex hulls and sorting, Computing 33 (1) (1984) 1–11.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    H. Bast and T. Hagerup, Fast parallel space allocation, estimation and integer sorting, Technical Report MPI-I-93-123 (June 1993).Google Scholar
  5. 5.
    B. K. Bhattacharya and S. Sen, On simple, practical, optimal, output-sensitive randomized planar convex hull algorithm, J. Algorithms 25 (1997) 177–193.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    B. Chazelle and J. Fredman, A deterministic view of random sampling and its use in geometry, Combinatorica 10 (3) (1990) 229–249.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    W. Chen and K. Wada, On computing the upper envelope of segments in parallel, Proc. International Conference on Parallel Processing. (1998).Google Scholar
  8. 8.
    K. L. Clarkson, A randomized algorithm for computing a face in an arrangement of line segments.Google Scholar
  9. 9.
    K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geometry, II, Discrete Comput. Geom. 4 (1989) 387–421.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. Goodrich, Geometric partitioning made easier, even in parallel, in: Proc. 9th ACM Sympos. Comput. Geom. (1993) 73–82.Google Scholar
  11. 11.
    L. J. Guibas, M. Sharir, and S. Sifrony, On the general motion planning problem with two degrees of freedom, Discrete Comput. Geom., 4 (1989), 491–521zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    N. Gupta, Efficient Parallel Output-Size Sensitive Algorithms, Ph.D. Thesis, Department of Computer Science and Engineering, Indian Institute of Technology, Delhi (1998).Google Scholar
  13. 13.
    N. Gupta and S. Sen, Optimal, output-sensitive algorithms for constructing planar hulls In parallel, Comput. Geom. Theory and App. 8 (1997) 151–166.zbMATHMathSciNetGoogle Scholar
  14. 14.
    N. Gupta and S. Sen, Faster output-sensitive parallel convex hull for d ≤ 3: optimal sub-logarithmic algorithms for small outputs, in: Proc. ACM Sympos. Comput. Geom. (1996) 176–185.Google Scholar
  15. 15.
    J. Hershberger, Finding the upper envelope of n line segments in O(n log n) time, Inform. Process. Lett. 33 (1989) 169–174.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    M. Ketan, Computational Geometry: An Introduction through Randomized Algorithms. Prentice Hall, EnglewoodCliffs, NJ, (1994).Google Scholar
  17. 17.
    F. Neilsen and M. Yvinec, An output-sensitive convex hull algorithm for convex objects. Institut National De Recherche En Informatique Et En Automatique. (1995).Google Scholar
  18. 18.
    S. Rajasekaran and S. Sen, in: J. H. Reif, Ed., Random Sampling Techniques and Parallel Algorithm Design (Morgan Kaufmann Publishers, San Mateo, CA, 1993).Google Scholar
  19. 19.
    J. H. Reif and S. Sen, Randomized algorithms for binary search and Load Balancing on fixedconnection networks with geometric applications, SIAM J. Comput. 23 (3) (1994) 633–651.zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    J. H. Reif and S. Sen, optimal parallel randomized algorithms for 3-D convex hull, and related problems, SIAM J. Comput. 21 (1992) 466–485.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    S. Sen, Lower bounds for parallel algebraic decision trees, parallel complexity of convex hulls and related problems, Theoretical Computer Science. 188 (1997) 59–78.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Neelima Gupta
    • 1
  • Sumit Chopra
    • 2
  • Sandeep Sen
    • 3
  1. 1.Department of Computer ScienceHansraj College, Delhi UniversityNew DelhiIndia
  2. 2.Department of Computer ScienceHansraj College, Delhi UniversityNew DelhiIndia
  3. 3.Department of Computer Science and EngineeringIIT DelhiNew DelhiIndia

Personalised recommendations