Advertisement

When Worlds Collide: Derandomization, Lower Bounds, and Kolmogorov Complexity

  • Eric Allender
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2245)

Abstract

This paper has the following goals:

  • To survey some of the recent developments in the field of derandomization.

  • To introduce a new notion of time-bounded Kolmogorov complexity (KT), and show that it provides a useful tool for understanding advances in derandomization, and for putting various results in context.

  • To illustrate the usefulness of KT, by answering a question that has been posed in the literature, and

  • To pose some promising directions for future research.

Keywords

Truth Table Kolmogorov Complexity Random String Pseudorandom Generator Universal Turing Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity classes. Journal of Computer and System Sciences 36 (1988) 254–276zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Immerman, N.: Nondeterministic space is closed under complement. SIAM Journal on Computing 17 (1988) 935–938zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Informatica 26 (1988) 279–284zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Lund, C., Fortnow, L., Karlo., H., Nisan, N.: Algebraic methods for interactive proof systems. Journal of the ACM 39 (1992) 859–868zbMATHCrossRefGoogle Scholar
  5. 5.
    Shamir, A.: IP = PSPACE. Journal of the ACM 39 (1992) 869–877zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Razborov, A.A., Rudich, S.: Natural proofs. Journal of Computer and System Sciences 55 (1997) 24–35zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, New York (1994)zbMATHGoogle Scholar
  8. 8.
    Du, D.Z., Ko, K.I.: Theory of Computational Complexity. Wiley-Interscience, New York (2000)zbMATHGoogle Scholar
  9. 9.
    Vollmer, H.: Introduction to Circuit Complexity. Springer-Verlag (1999)Google Scholar
  10. 10.
    Hartmanis, J., Yesha, Y.: Computation times of NP sets of different densities. Theoretical Computer Science 34 (1984) 17–32zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Allender, E., Rubinstein, R.: P-printable sets. SIAM J. Comput. 17 (1988) 1193–1202zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Høastad, J.: Computational Limitations of Small Depth Circuits. MIT Press, Cambridge (1988)Google Scholar
  13. 13.
    Allender, E., Watanabe, O.: Kolmogorov complexity and degrees of tally sets. Information and Computation 86 (1990) 160–178zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Impagliazzo, R., Tardos, G.: Decision versus search problems in super-polynomial time. In: IEEE Symposium on Foundations of Computer Science (FOCS). (1989) 222–227Google Scholar
  15. 15.
    Buhrman, H., Fortnow, L., Laplante, S.: Resource-bounded Kolmogorov complexity revisited. SIAM Journal on Computing (2001) to appear; a preliminary version appeared in STACS 1997.Google Scholar
  16. 16.
    Levin, L.A.: Randomness conservation inequalities; information and independence in mathematical theories. Information and Control 61 (1984) 15–37zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Allender, E.: Some consequences of the existence of pseudorandom generators. Journal of Computer and System Sciences 39 (1989) 101–124zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Allender, E.: Applications of time-bounded kolmogorov complexity in complexity theory. In: Osamu Watanabe (Ed.), Kolmogorov Complexity and Computational Complexity. Springer-Verlag (1992) 4–22Google Scholar
  19. 19.
    Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: ACM Symposium on Theory of Computing (STOC). (1997) 220–229Google Scholar
  20. 20.
    Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR lemma. Journal of Computer and System Sciences 62 (2001) 236–266zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Arvind, V., Köbler, J.: On pseudorandomness and resource-bounded measure. Theoretical Computer Science 255 (2001) 205–221zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. In: ACM Symposium on Theory of Computing (STOC). (1999) 659–667Google Scholar
  23. 23.
    Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin games using hitting sets. In: IEEE Symposium on Foundations of Computer Science (FOCS). (1999) 71–80Google Scholar
  24. 24.
    Babai, L., Fortnow, L., Nisan, N., Wigderson, A.: BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity 3 (1993) 307–318zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Impagliazzo, R., Kabanets, V., Wigderson, A.: In search of an easy witness: Exponential time vs. probabilistic polynomial time. In: IEEE Conference on Computational Complexity. (2001) 2–12Google Scholar
  26. 26.
    Antunes, L., Fortnow, L., van Melkebeek, D.: Computational depth. In: IEEE Conference on Computational Complexity. (2001) 266–273Google Scholar
  27. 27.
    Ronneburger, D.: Personal communication. (2001)Google Scholar
  28. 28.
    Nisan, N., Wigderson, A.: Hardness vs. randomness. Journal of Computer and System Sciences 49 (1994) 149–167zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Impagliazzo, R., Shaltiel, R., Wigderson, A.: Near-optimal conversion of hardness into pseudo-randomness. In: IEEE Symposium on Foundations of Computer Science (FOCS). (1999) 181–190Google Scholar
  30. 30.
    Fortnow, L.: Comparing notions of full derandomization. In: IEEE Conference on Computational Complexity. (2001) 28–34Google Scholar
  31. 31.
    Kabanets, V., Racko., C., Cook, S.: Efficiently approximable real-valued functions. In: Electronic Colloquium on Computational Complexity (ECCC) Report TR00-034. (2000) (http://www.eccc.uni-trier.de/eccc).
  32. 32.
    Zimand, M.: Large sets in AC0 have many strings with low Kolmogorov complexity. Information Processing Letters 62 (1997) 165–170CrossRefMathSciNetGoogle Scholar
  33. 33.
    Agrawal, M.: Hard sets and pseudo-random generators for constant depth circuits. In: Proceedings 21st Foundations of Software Technology and Theoretical Computer Science Conference (FST&TCS). Lecture Notes in Computer Science, Springer (2001) (these proceedings).Google Scholar
  34. 34.
    Regan, K.W., Sivakumar, D., Cai, J.Y.: Pseudorandom generators, measure theory, and natural proofs. In: IEEE Symposium on Foundations of Computer Science (FOCS). (1995) 26–35Google Scholar
  35. 35.
    Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences 44 (1992) 220–258zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Buhrman, H., Torenvliet, L.: Randomness is hard. SIAM Journal on Computing 30 (2001) 1485–1501CrossRefMathSciNetGoogle Scholar
  37. 37.
    Ko, K.I.: On the complexity of learning minimum time-bounded Turing machines. SIAM Journal on Computing 20 (1991) 962–986zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Hartmanis, J.: Generalized Kolmogorov complexity and the structure of feasible computations (preliminary report). In: IEEE Symposium on Foundations of Computer Science (FOCS). (1983) 439–445Google Scholar
  39. 39.
    Kabanets, V., Cai, J.Y.: Circuit minimization problem. In: ACM Symposium on Theory of Computing (STOC). (2000) 73–79Google Scholar
  40. 40.
    Buhrman, H., Mayordomo, E.: An excursion to the Kolmogorov random strings. Journal of Computer and System Sciences 54 (1997) 393–399zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Agrawal, M.: The first-order isomorphism theorem. In: Proceedings 21st Foundations of Software Technology and Theoretical Computer Science Conference (FST&TCS). Lecture Notes in Computer Science, Springer (2001) (these proceedings).Google Scholar
  42. 42.
    Trevisan, L.: Construction of extractors using pseudo-random generators. Journal of the ACM (2001) to appear; a preliminary version appeared in STOC 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Eric Allender
    • 1
  1. 1.Department of Computer ScienceRutgers UniversityPiscatawayUSA

Personalised recommendations