Skip to main content

Introduction

  • Chapter
  • First Online:
Capillary Surfaces

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 178))

  • 657 Accesses

Abstract

The advantages of performing experiments under conditions of weightlessness are discussed in this chapter; the inherent handicaps are not ignored. In any experimental study or procedure in materials science or in the life sciences which may gain from performance under microgravity conditions, at least one fluid phase is involved. A fluid means a liquid or a gas. The most obvious effects of microgravity are the constancy of fluid-static pressure, the absence of free convection and the absence of sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborn H, Löhberg K: Ergebnisse von Raketenversuchen zur Entmischung flüssiger Aluminium-Indium-Legierungen. Statusseminar Spacelab-Nutzung des BMFT (1976) Paper 12.1

    Google Scholar 

  2. Ahlborn H, Löhberg K: Influences affecting separation of monotectic alloys under microgravity. ESA SP-222 (1984) 55–62

    Google Scholar 

  3. Boys CV: Seifenblasen und die Kräfte, die sie formen. (Soap bubbles and the forces which mould them.) Desch-Taschenbuch: Natur und Wissen: 70–73 (1959)

    Google Scholar 

  4. Frohberg G, Kraatz KH, Wever H: Selfdiffusion of Sn112 and Sn124 in liquid tin. ESA SP-222 (1984) 201–205

    Google Scholar 

  5. Frohberg G, Kraatz KH, Wever H: Atomic diffusion and transport in liquids. In: Scientific Results of the German Spacelab Mission D1. P.R. Sahm, R. Jansen, M.H. Keller (eds.), Cologne (1987a) 144–151

    Google Scholar 

  6. Frohberg G, Kraatz KH, Wever H: Transport kinetics and structure of metallic melts, self-, impurity-and interdiffusion. In: Research Program of the German Spacelab Mission D2. P.R. Sahm, R. Jansen, M.H. Keller (eds.), Cologne (1987b) 144–151

    Google Scholar 

  7. Frohberg G: Diffusion in liquids. In: Scientific Results of the German Spacelab Mission D2. P.R. Sahm, M.H. Keller, B. Schiewe (eds.), Cologne (1995a) 275–287

    Google Scholar 

  8. Frohberg G, Kraatz KH, Griesche A, Wever H: Diffusion in liquid metals and alloys: self-and impurity diffusion. In: Scientific Results of the German Spacelab Mission D2. P.R. Sahm, M.H. Keller, B. Schiewe (eds.) Cologne (1995b) 288–294

    Google Scholar 

  9. Gelles SH, Markworth AJ: Agglomeration in immiscible liquids. Final post-flight report on SPAR II experiment 74-30, NASA TM-78125 (1977)

    Google Scholar 

  10. Gelles SH, Markworth AJ: Agglomeration in immiscible liquids. Final post-flight report on SPAR V experiment 74-30, NASA TM-78275 (1980)

    Google Scholar 

  11. Körber C: Phenomena at the advancing ice—liquid interface: solutes, particles and biological cells. Q. Rev. Biophys. 21 (1988) 229–298

    Article  Google Scholar 

  12. Kuschnigg I, Sprenger HJ: Shot towers — predecessors of low gravity utilization. Low G, INTOSPACE 7.1, Hannover (1996) 10–11

    Google Scholar 

  13. Langbein D: The motion of particles ahead of a solidification front. In: Intermolecular Forces. B. Pullman (ed.), Reidel (1981) 547–562

    Google Scholar 

  14. Langbein D: Separation of binary alloys with miscibility gap in the melt. In: Progress in Low-Gravity Fluid Dynamics and Transport Phenomena. J.N. Koster, R.L. Sani (eds.), IAA Series (1990) 631–659

    Google Scholar 

  15. Langbein D: Fluid physics. In: Research in Space — The German Spacelab Missions. P.R. Sahm, M.H. Keller, B. Schiewe (eds.), WPF, Cologne (1993) 91–114

    Google Scholar 

  16. Malméjac Y, Bewersdorff A, Da Riva I, Napolitano LG: Challenges and prospectives of microgravity research in space. ESA BR 05, October 1981

    Google Scholar 

  17. McDonald JE: The shape of raindrops. Sci. Am., February 1954, p. 64

    Google Scholar 

  18. Minchinton W: Shot towers — precursors of modern low gravity drop facilities. Low G, INTOSPACE 6.3, Hannover (1995) 3–5

    Google Scholar 

  19. Minkowski H: Kapillarität. In: Encyklopädie der Mathematischen Wissenschaften. A. Sommerfeld (ed.), B.G. Teubner, Leipzig, Vol. 9 (1921) 558–613

    Google Scholar 

  20. Myshkis AD, Babskii VG, Kopachevskii ND, Slobozhanin LA, Tyuptsov AD: Low-Gravity Fluid Mechanics [translated by R.S. Wadhwa]. Springer, Berlin, Heidelberg (1976)

    Google Scholar 

  21. Otto GH, Lorenz H: Simulation of low gravity conditions by rotation. AIAA 16th Aerospace Sciences Meeting, Huntsville, AL (1978), AIAA Paper 78-273

    Google Scholar 

  22. Pötschke J, Rogge V: On the behavior of foreign particles at an advancing solid-liquid interface. J. Cryst. Growth 94 (1989) 726–738

    Article  Google Scholar 

  23. Plateau J: Statique expérimentale et théorique des liquides. Mém. de l’ Acad. de Belgique 16 (1843)

    Google Scholar 

  24. Plateau J: Statique expérimentale et théoretique des liquids soumis aux seules forces moléculaires. Vol. 2. Gauthier-Villars, Paris (1873)

    Google Scholar 

  25. Ratke L, Diefenbach S: Liquid immiscible alloys. Mater. Sci. Eng. R15 (1995) 263–347

    CAS  Google Scholar 

  26. Potard C: Filtration-theory approach to immiscible alloys solidification. Proceedings of the RIT/ESA/SSC Workshop, Järva Krog, Sweden, 18–20 January 1984. ESA SP-219, 79–82

    Google Scholar 

  27. Snyder RS: Summary of Pre-ASTP Results. Proceedings of the Second European Symposium on Material Sciences in Space, Frascati, 6–8 April 1976. ESA SP-114, 19–26

    Google Scholar 

  28. Sprenger HJ: Low G production in shot towers. Low G, INTOSPACE 7.2, Hannover (1996) 11–13

    Google Scholar 

  29. Vreeburg JPB: Summary review of microgravity fluid science experiments. ESA Report, Nov. 1986

    Google Scholar 

  30. European Space Agency: The effect of gravity on the solidification of immiscible alloys. Proceedings of the RIT/ESA/SSC Workshop, Järva Krog, Sweden, 18–20 January 1984. ESA SP–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langbein, D. (2002). Introduction. In: Langbein, D. (eds) Capillary Surfaces. Springer Tracts in Modern Physics, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45267-2_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-45267-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41815-3

  • Online ISBN: 978-3-540-45267-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics