Skip to main content

Micromagnetic Spin Structure

  • Chapter
  • First Online:
Spin Electronics

Part of the book series: Lecture Notes in Physics ((LNP,volume 569))

Abstract

Magnetization inhomogenities, associated for example with grain boundaries, give rise to local spin-dependent potentials and affect the magnetoresistance. The local magnetization M(r) depends on both intrinsic and extrinsic factors. Intrinsic properties, such as spontaneous magnetization and anisotropy, are determined on an atomic scale and are basically independent of the material’s real structure and history. Extrinsic properties, such as remanence and coercivity, are linked to magnetic hysteresis, realized on mesoscopic or macroscopic length scales, and are strongly real-structure dependent. The local magnetization M(r), which determines the magnetoresistance, is determined from a nonlinear and nonlocal micromagnetic energy functional containing the intrinsic properties as parameters. This chapter focuses on basic micromagnetic effects and on the spin structure at grain boundaries. Continuum and layer-resolved analytic calculations yield a quasi-discontinuity of the magnetization between misaligned and in-completely exchange-coupled grains and a disproportionally large grain-boundary magnetoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petro., P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  CAS  Google Scholar 

  2. A. E. Berkowitz, J. R. Mitchell, M. J. Carey, A. P. Young, S. Zhang, F. E. Spada, F. T. Parker, A. Hutten, and G. Thomas, Phys. Rev. Lett. 68, 3745 (1992).

    Article  CAS  Google Scholar 

  3. J. Q. Xiao, J. S. Jiang, and C. L. Chien, Phys. Rev. Lett. 68, 3749 (1992).

    Article  CAS  Google Scholar 

  4. J. F. Gregg, W. Allen, K. Ounadjela, M. Viret, M. Hehn, S. M. Thompson, and J. M. D Coey, Phys. Rev. Lett. 77, 1580 (1996).

    Article  CAS  Google Scholar 

  5. P. M. Levy and S. Zhang, Phys. Rev. Lett. 79, 5110 (1997).

    Article  CAS  Google Scholar 

  6. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, and K. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

    Article  Google Scholar 

  7. J. M. D. Coey, M. Viret, L. Ranno, and K. Ounadjela, Phys. Rev. Lett. 75, 3910 (1995).

    Article  CAS  Google Scholar 

  8. P. Schiffer, A. P. Ramirez, W. Bao, and S.-W, Cheong, Phys. Rev. Lett. 75, 3339 (1995).

    Article  Google Scholar 

  9. N. D. Mathur, G. Burnell, S. P. Isaac, T. J. Jackson, B.-S. Theo, J. L. MacManus Driscoll, L. F. Cohen, J. E. Evetts, and M. G. Blamire, Nature 387, 266 (1997).

    Article  CAS  Google Scholar 

  10. J. M. D. Coey, A. E. Berkowitz, Ll. Balcells, F. F. Putris, and A. Barry, Phys. Rev. Lett. 80, 3815 (1998).

    Article  CAS  Google Scholar 

  11. N. F. Mott and H. Jones, “The Theory of the Properties of Metals and Alloys”, (University Press, Oxford, 1936).

    Google Scholar 

  12. W. F. Brown, “Micromagnetics”, (Wiley, New York, 1963).

    Google Scholar 

  13. A. Aharoni, “Introduction to the Theory of Ferromagnetism”, (University Press, Oxford, 1996).

    Google Scholar 

  14. R. Skomski and J. M. D. Coey, “Permanent Magnetism”, (Institute of Physics, Bristol, 1999).

    Google Scholar 

  15. H. R. Hilzinger and H. Kronmüller, Phys. Lett. 51A 59 (1975).

    CAS  Google Scholar 

  16. M. Viret, D. Vignoles, D. Cole, J. M. D. Coey, W. Allen, D. S. Daniel, and J. F. Gregg, Phys. Rev. B 53, 8464 (1996).

    Article  CAS  Google Scholar 

  17. A. Gupta, G. Q. Gong, G. Xiao, P. R. Duncombe, P. Lecoeur, P. Trouilloud, Y. Y. Wang and V. P. Dravid, and J. Z. Sun, Phys. Rev. B 54, 15629 (1996).

    Article  Google Scholar 

  18. E. Ising, Z. Phys. 31, 253 (1925).

    Article  CAS  Google Scholar 

  19. W. Heisenberg, Z. Phys. 49, 619 (1928).

    Article  CAS  Google Scholar 

  20. F. Bloch, Z. Phys. 57, 545 (1929).

    Article  CAS  Google Scholar 

  21. H. Brooks, Phys. Rev. 58, 909 (1940).

    Article  CAS  Google Scholar 

  22. J. C. Slater, Rev. Mod. Phys. 25, 199 (1953).

    Article  Google Scholar 

  23. F. Bloch, Z. Phys. 74, 295 (1932).

    Article  CAS  Google Scholar 

  24. L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935).

    Google Scholar 

  25. M. Kersten, Z. Phys. 44, 63 (1943).

    Google Scholar 

  26. F. Cyrot-Lackmann, J. Phys. Chem. Solids 29, 1235 (1968).

    Article  CAS  Google Scholar 

  27. R. Skomski, H.-P. Oepen, and J. Kirschner, Phys. Rev. B 58, 11138(1998).

    Article  CAS  Google Scholar 

  28. F. Bloch and G. Gentile, Z. Phys. 70, 395 (1931).

    Article  CAS  Google Scholar 

  29. E. C. Stoner and E. P. Wohlfarth, Phil. Trans. Roy. Soc. A240, 599 (1948).

    Article  CAS  Google Scholar 

  30. C. Kittel, Rev. Mod. Phys. 21, 541 (1949).

    Article  Google Scholar 

  31. D. J. Craik and R. S. Tebble, Rep. Prog. Phys. 24 116 (1961).

    Article  Google Scholar 

  32. S. Chikazumi, “Physics of Magnetism”, (Wiley, New York, 1964).

    Google Scholar 

  33. R. Becker and W. Döring, “Ferromagnetismus”, (Springer, Berlin, 1939).

    Google Scholar 

  34. R. Skomski, J. Appl. Phys. 83, 6503 (1998).

    Article  CAS  Google Scholar 

  35. R. Skomski, J. P. Liu, and D. J. Sellmyer, Phys. Rev. B 60, 7359 (1999).

    Article  CAS  Google Scholar 

  36. R. Skomski and D. J. Sellmyer, J. Appl. Phys. 87, 4756 (2000).

    Article  CAS  Google Scholar 

  37. E. Kneller, “Ferromagnetismus” (Springer, Berlin, 1962).

    Google Scholar 

  38. R. Skomski, J. P. Liu, J. M. Meldrim, and D. J. Sellmyer, in “Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys”, eds., L. Schultz and K.-H. Müller, (Werkstoffinformationsgesellschaft, Frankfurt/M., 1998), p. 277.

    Google Scholar 

  39. R. Harris, M. Plischke, and M. J. Zuckermann, Phys. Rev. Lett. 31, 160 (1973).

    Article  CAS  Google Scholar 

  40. K. Moorjani and J. M. D. Coey, “Magnetic Glasses”, (Elsevier, Amsterdam, 1984).

    Google Scholar 

  41. E. M. Chudnovsky, W. M. Saslow, and R. A. Serota, Phys. Rev. B 33, 251 (1986).

    Article  Google Scholar 

  42. R. Skomski, J. Magn. Magn. Mater. 157–158, 713 (1996).

    Google Scholar 

  43. T. Schre. and J. Fidler, J. Magn. Magn. Mater. 175–181, 970 (1998).

    Google Scholar 

  44. R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).

    Article  CAS  Google Scholar 

  45. D. J. Sellmyer, M. Yu, R. A. Thomas, Y. Liu, and R. D. Kirby, Phys. Low-Dim. Struct. 1–2, 153 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skomski, R. (2001). Micromagnetic Spin Structure. In: Ziese, M., Thornton, M.J. (eds) Spin Electronics. Lecture Notes in Physics, vol 569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45258-3_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-45258-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41804-7

  • Online ISBN: 978-3-540-45258-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics