Skip to main content

Computing Optimal Linear Layouts of Trees in Linear Time

  • Conference paper
  • First Online:
Algorithms - ESA 2000 (ESA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1879))

Included in the following conference series:

Abstract

We present a linear time algorithm which, given a tree, computes a linear layout optimal with respect to vertex separation. As a consequence optimal edge search strategies, optimal node search strategies, and optimal interval augmentations can be computed also in O(n) for trees. This improves the running time of former algorithms from O(n log n) to O(n) and answers two related open questions raised in [7] and [15]1.

It should be clear that there are some published papers in which similar results are claimed. Later it turned out that the suggested algorithms do not run in O(n) as stated but in O(n log n).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21:358–402, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of permutation graphs. SIAM J. Disc. Math., 8:606–616, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Bodlaender and R. Mohring. The pathwidth and treewidth of cographs. SIAM J. Disc. Math., 6:181–188, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Chung, F. Makedon, I. Sudborough, and J. Turner. Polynomial algorithms for the mincut linear arrangement problem on degree restricted trees. SIAM J. Comput., 14(1): 158–177, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. Cook and R. Sethi. Storage requirements for deterministic polynomial finite recognizable languages. J. Comput. System Sci, 13:25–37, 1976.

    MATH  MathSciNet  Google Scholar 

  7. J. Ellis, I. Sudborough, and J. Turner. The vertex separation and search number of a graph. Inform. Comput., 113:50–79, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Gustedt. On the pathwidth of chordal graphs. Disc. Appl. Math., 45:233–248, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Kinnersley. The vertex separation number of a graph equals its path-width. Inform. Process. Lett., 142:345–350, 1992.

    Article  MathSciNet  Google Scholar 

  10. L. Kirousis and C. Papadimitriou. Interval graphs and searching. Disc. Math., 55:181–184, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Kirousis and C. Papadimitriou. Searching and pebbling. Theor. Comp. Science, 47:205–218, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. LaPaugh. Recontamination does not help to search a graph. J. Assoc. Comput. Mach., 40(2):243–245, 1993.

    MathSciNet  Google Scholar 

  13. T. Lengauer. Black-white pebbles and graph separation. Acta Informat., 16:465–475, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Makedon and I. Sudborough. On minimizing width in linear layouts. Disc. Appl. Math., 23:243–265, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  15. N. Megiddo, S. Hakimi, M. Garey, D. Johnson, and C. Papadimitriou. The complexity of searching a graph. J. Assoc. Comput. Mach., 35(1): 18–44, 1988.

    MATH  MathSciNet  Google Scholar 

  16. R. H. Mohring. Graph problems related to gate matrix layout and PLA folding. In E. Mayr, H. Noltmeier, and M. Syslo, editors, Computational Graph Theory, pages 17–51. Springer Verlag, 1990.

    Google Scholar 

  17. F. Monien and I. Sudborough. Min cut is NP-complete for edge weighted trees. Theor. Comp. Science, 58:209–229, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. Lick, editors, Theory and Applications of Graphs, pages 426–441. Springer-Verlag, New York/Berlin, 1976.

    Google Scholar 

  19. N. Robertson and P. Seymour. Graph minors. I. Excluding a forest. J. Comb. Theory Series B, 35:39–61, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  20. N. Robertson and P. Seymour. Disjoint paths-A servey. SIAM J. Alg. Disc. Meth., 6:300–305, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Yannakakis. A polynomial algorithm for the min-cut linear arrangement of trees. J. Assoc. Comput. Mach., 32(4):950–988, 1985.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Skodinis, K. (2000). Computing Optimal Linear Layouts of Trees in Linear Time. In: Paterson, M.S. (eds) Algorithms - ESA 2000. ESA 2000. Lecture Notes in Computer Science, vol 1879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45253-2_37

Download citation

  • DOI: https://doi.org/10.1007/3-540-45253-2_37

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41004-1

  • Online ISBN: 978-3-540-45253-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics