Skip to main content

Adhesion and Fracture of Interfaces Between Immiscible Polymers: from the Molecular to the Continuum Scal

  • Chapter
  • First Online:
Molecular Simulation Fracture Gel Theory

Part of the book series: Advances in Polymer Science ((POLYMER,volume 156))

Abstract

In order to obtain a measurable fracture toughness, a joint between two immiscible polymer glasses must be able to transfer mechanical stress across the interface. This stress transfer capability is very weak for narrow interfaces and a significant reinforcement can be achieved, either by the use of connecting chains (block copolymers), or by a broadening of the interface (random copolymers). In both cases, the stress is transferred by entanglements between polymer chains. The molecular criteria for efficient stress transfer, by connecting chains and by broad interfaces, are reviewed here with a special emphasis on the role of the molecular architecture (diblock, triblock or random copolymers) and molecular weight of the chains present at the interface. Recent theoretical developments in the relationship between macroscopic fracture toughness and interfacial stress transfer are also discussed, and the essential role of bulk plastic deformation properties of the polymers on either side of the interface are specifically addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helfand E, Tagami Y (1972) J Chem Phys 56:3592–3601

    CAS  Google Scholar 

  2. Hawker CJ (1994) J Am Chem Soc 116:11185–11186

    CAS  Google Scholar 

  3. Kotani Y, Kamigaito M, Sawamoto M (1998) Macromolecules 31:5582–5587

    CAS  Google Scholar 

  4. Hawker CJ, Elce E, Dao J, Volksen W, Russell TP, Barclay GG (1996) Macromolecules 29:2686–2688

    CAS  Google Scholar 

  5. Haddleton DM, Crossman MC, Hunt KH, Topping C, Waterson C, Suddaby KG (1997) Macromolecules 30:3992–3998

    CAS  Google Scholar 

  6. Odian G (1981) Principles of polymerization. Wiley, New York

    Google Scholar 

  7. Kramer EJ (1991) Physica B 173:189–198

    CAS  Google Scholar 

  8. Mills PJ, Green PF, Palmstrom CJ, Mayer JW, Kramer EJ (1984) Appl Phys Lett 45:957–959

    CAS  Google Scholar 

  9. Chaturvedi UK, Steiner U, Zak O, Krausch G, Schatz G, Klein J (1990) Appl Phys Lett 56:1228–1230

    CAS  Google Scholar 

  10. Chaturvedi U, Steiner U, Zak O, Krausch G, Klein J (1989) Phys Rev Lett 63:616–619

    CAS  Google Scholar 

  11. Payne RS, Clough AS, Murphy P, Mills PJ (1989) Nucl Instrum Methods B 42:130

    Google Scholar 

  12. Sokolov J, Rafailovich MH, Jones RAL, Kramer EJ (1989) Appl Phys Lett 54:590–592

    CAS  Google Scholar 

  13. Genzer JB, Rothman JB, Composto RJ (1994) Nucl Instrum Methods B 86:345

    CAS  Google Scholar 

  14. Brown HR, Deline VR, Green PF (1989) Nature 341:221–222

    CAS  Google Scholar 

  15. Kramer EJ (1996) MRS Bulletin 21:37

    CAS  Google Scholar 

  16. Boucher E, Folkers JP, Hervet H, Léger L, Creton C (1996) Macromolecules 29:774–782

    CAS  Google Scholar 

  17. Brown HR (1989) Macromolecules 22:2859–2860

    CAS  Google Scholar 

  18. Hutchinson JW, Suo Z (1991) Adv Appl Mech 29:63–191

    Google Scholar 

  19. Erdogan F, Sih CF(1963) J Basic Eng Trans ASME 85:519

    Google Scholar 

  20. Rice JR (1988) J Appl Mech 55:98–103

    Google Scholar 

  21. Xiao F, Hui CY, Kramer EJ (1993) J Mater Sci 28:5620–5629

    CAS  Google Scholar 

  22. Creton C, Kramer EJ, Hui CY, Brown HR (1992) Macromolecules 25:3075–3088

    CAS  Google Scholar 

  23. Kanninen MF (1973) Int J Fracture 9:83–92

    Google Scholar 

  24. Brown HR (1990) J Mater Sci 25:2791–2794

    CAS  Google Scholar 

  25. Xiao F, Hui C-Y, Washiyama J, Kramer EJ (1994) Macromolecules 27:4382–4390

    CAS  Google Scholar 

  26. Bernard B, Brown HR, Hawker CJ, Kellock AJ, Russell TP (1999) Macromolecules 32:6254–6260

    CAS  Google Scholar 

  27. Sikka M, Pellegrini NN, Schmitt EA, Winey KI (1997) Macromolecules 30:445–455

    CAS  Google Scholar 

  28. Washiyama J, Creton C, Kramer EJ (1992) Macromolecules 25:4751–4758

    CAS  Google Scholar 

  29. Lauterwasser BD, Kramer EJ (1979) Philos Mag A 39:469–495

    CAS  Google Scholar 

  30. Plummer CJG,K ausch HH, Creton C,K alb F,L éger L (1998) Macromolecules 31:6164–6176

    CAS  Google Scholar 

  31. Washiyama J, Kramer EJ, Creton C, Hui CY (1994) Macromolecules 27:2019–2024

    CAS  Google Scholar 

  32. Washiyama J, Kramer EJ, Hui CY (1993) Macromolecules 26:2928–2934

    CAS  Google Scholar 

  33. Washiyama J, Creton C, Kramer EJ, Xiao F, Hui CY (1993) Macromolecules 26:6011–6020

    CAS  Google Scholar 

  34. Brown HR, Char K, Deline VR, Green PF (1993) Macromolecules 26:4155–4163

    CAS  Google Scholar 

  35. Cho K, Brown HR, Miller DC (1990) J Polym Sci Part B Polym Phys 28:1699–1718

    CAS  Google Scholar 

  36. Char K, Brown HR, Deline VR (1993) Macromolecules 26:4164–4171

    CAS  Google Scholar 

  37. Creton C, Brown HR, Deline VR (1994) Macromolecules 27:1774–1780

    CAS  Google Scholar 

  38. Norton LJ, Smigolova V, Pralle MU, Hubenko A, Dai KH, Kramer EJ, Hahn S, Berglund C, DeKoven B (1995) Macromolecules 28:1999–2008

    CAS  Google Scholar 

  39. Kramer EJ (1995) Isr J Chem 35:49–54

    CAS  Google Scholar 

  40. Sha Y, Hui CY, Kramer EJ, Hahn SF, Berglund CA (1996) Macromolecules 29:4728–4736

    CAS  Google Scholar 

  41. Suo Z, Hutchinson JW (1990) Int J Fracture 43:1–18

    Google Scholar 

  42. Xu DB, Hui CY, Kramer EJ, Creton C (1991) Mech Mater 11:257–268

    Google Scholar 

  43. Raphaël E, de Gennes PG (1992) J Phys Chem 96:4002–4007

    Google Scholar 

  44. Ji H, de Gennes PG (1993) Macromolecules 26:520–525

    CAS  Google Scholar 

  45. Dai KH, Washiyama J, Kramer EJ (1994) Macromolecules 27:4544–4553

    CAS  Google Scholar 

  46. Dai CA, Jandt KD, Iyengar D, Slack NL, Dai KH, Davidson WB, Kramer EJ (1997) Macromolecules 30:549–560

    CAS  Google Scholar 

  47. Brown HR (1991) Macromolecules 24:2752–2756

    CAS  Google Scholar 

  48. Miller P, Buckley DJ, Kramer EJ (1991) J Mater Sci 26:4445–4454

    CAS  Google Scholar 

  49. Behan P, Bevis M, Hull D (1975) Proc R Soc London Ser A Mathematical and Physical Sciences A243:525

    Google Scholar 

  50. Hui CY, Ruina A, Creton C, Kramer EJ (1992) Macromolecules 25:3948–3955

    CAS  Google Scholar 

  51. Sha Y, Hui CY, Ruina A, Kramer EJ (1997) Acta Mater 45:3555–3563

    CAS  Google Scholar 

  52. Donald AM, Kramer EJ, Bubeck RA (1982) J Polym Sci Polym Phys Ed 20:1129–1141

    CAS  Google Scholar 

  53. Donald AM, Kramer EJ (1982) J Polym Sci Polym Phys Ed 20:899–909

    CAS  Google Scholar 

  54. Sha Y, Hui CY, Ruina A, Kramer EJ (1995) Macromolecules 28:2450–2459

    CAS  Google Scholar 

  55. Goodier JN, Field FA (1963) In: Drucker DC, Gilman JJ (eds) International conference on fracture of solids (Metallurgical Society conferences), vol 20. Interscience, New York,pp 103–118

    Google Scholar 

  56. Dugdale DS (1960) J Mech Phys Solids 8:100–104

    Google Scholar 

  57. Kramer EJ (1997) Plast, Rubber and Compos Process Appl 26:241–249

    CAS  Google Scholar 

  58. Wool RP, Yuan BL, McGarel OJ (1989) Polym Eng Sci 29:1340–1367

    CAS  Google Scholar 

  59. Dai CA (1995) PhD thesis, Cornell University

    Google Scholar 

  60. Kramer EJ, Norton LJ, Dai CA, Sha Y, Hui CY (1994) Faraday Discuss Chem Soc 98:31–46

    CAS  Google Scholar 

  61. Gent AN, Schultz J (1972) J Adhes 3:281–294

    CAS  Google Scholar 

  62. Maugis D, Barquins M (1978) J Phys D Appl Phys 11:1989–2023

    Google Scholar 

  63. Passade N, Creton C, Gallot Y (2000) Polymer 41:9249–9263

    CAS  Google Scholar 

  64. Brown HR, Krappe U, Stadler R (1996) Macromolecules 29:6582–6588

    CAS  Google Scholar 

  65. Lake GJ, Lindley PB (1965) J Appl Polym Sci 9:1233–1251

    Google Scholar 

  66. Dai CA, Kramer EJ, Washiyama J, Hui CY (1996) Macromolecules 29:7536–7543

    CAS  Google Scholar 

  67. Schnell R, Stamm M, Creton C (1998) Macromolecules 31:2284–2292

    CAS  Google Scholar 

  68. Schnell R, Stamm M, Creton C (1999) Macromolecules 32:3420–3425

    CAS  Google Scholar 

  69. Brown HR (1999) in Macromolecules 34:3720–3724

    Google Scholar 

  70. Benkoski J, Kramer EJ, Fredrickson GH (2000) J. Polym. Sci. Polym. Phys. in press Ed.

    Google Scholar 

  71. Bernard B, Brown HR, Russell TP, Hawker CJ (1996) Polym Mater Sci Eng 29:155–156

    Google Scholar 

  72. Kulasekere R, Kaiser H, Ankner JF, Russell TP, Brown HR, Hawker CJ, Mayes AM (1996) Macromolecules 29:5493–5496

    CAS  Google Scholar 

  73. Kulasekere R, Kaiser H, Ankner JF, Russell TP, Brown HR, Hawker CJ, Mayes AM (1996) Physica B 221:306–308

    CAS  Google Scholar 

  74. Smith GD, Russell TP, Kulasekere R, Ankner JF, Kaiser H (1996) Macromolecules 29:4120–4124

    CAS  Google Scholar 

  75. Dai CA, Osuji CO, Jandt KD, Dair BJ, Ober CK, Kramer EJ (1997) Macromolecules 30:6727–6736

    CAS  Google Scholar 

  76. Edgecombe BD, Stein JA, Fréchet JMJ, Xu Z, Kramer EJ (1998) Macromolecules 31:1292–1304

    CAS  Google Scholar 

  77. Edgecombe BD, Fréchet JM, Xu Z, Kramer EJ (1998) Chem Mater 10:994–1002

    CAS  Google Scholar 

  78. Xu Z, Kramer EJ, Edgecombe BD, Fréchet JMJ (1997) Macromolecules 30:79–84

    Google Scholar 

  79. Dai C-A, Dair BJ, Dai KH, Ober CK, Kramer EJ, Hui CY, Jelinski LW (1994) Phys Rev Lett 73:2472–2475

    CAS  Google Scholar 

  80. Noolandi J, Shi AC (1995) Phys Rev Lett 74:2836

    CAS  Google Scholar 

  81. Milner ST, Fredrickson GH (1995) Macromolecules 28:7953–7956

    CAS  Google Scholar 

  82. Shull KR, Kramer EJ, Hadziioannou G, Tang W (1990) Macromolecules 23:4780–4787

    CAS  Google Scholar 

  83. Paul DR, Barlow JW (1984) Polymer 25:487–494

    CAS  Google Scholar 

  84. ten Brinke G, Karasz FE, MacKnight WJ (1983) Macromolecules 16:1827–1832

    Google Scholar 

  85. O’Shaughnessy B, Sawhney U (1996) Macromolecules 29:7230–7239

    CAS  Google Scholar 

  86. Fredrickson GH, Milner ST (1996) Macromolecules 29:7386–7390

    CAS  Google Scholar 

  87. O’Shaughnessy B, Vavylonis D (1999) Macromolecules 32:1785–1796

    CAS  Google Scholar 

  88. Fredrickson GH (1997) J Chem Phys106:2458–2468

    CAS  Google Scholar 

  89. Jiao J, Kramer EJ, de Vos S, Koning C (1999) Polym Commun 40:3585–3588

    CAS  Google Scholar 

  90. Jiao J, Kramer EJ, de Vos S, Möller M, Koning C (1999) Macromolecules 32:6261–6269

    CAS  Google Scholar 

  91. Lyu S-P, Cernohous JJ, Bates FS, Macosko CW (1999) Macromolecules 32:106–110

    CAS  Google Scholar 

  92. Boucher E (1995) Thèse de doctorat, Université Paris VI, France

    Google Scholar 

  93. Lee Y, Char K (1994) Macromolecules 27:2603–2606

    CAS  Google Scholar 

  94. Lee Y, Char K (1998) Macromolecules 31:7091–7094

    CAS  Google Scholar 

  95. Beck Tan NC, Peiffer DG, Briber RM (1996) Macromolecules 29:4969–4975

    Google Scholar 

  96. Boucher E, Folkers JP, Creton C, Hervet H, Léger L (1997) Macromolecules 30:2102–2109

    CAS  Google Scholar 

  97. Bidaux JE, Smith GD, Bernet N, Manson JA, Hilborn J (1996) Polymer 37:1129–1136

    CAS  Google Scholar 

  98. Duchet J, Chapel JP, Chabert B, Gerard JF (1998) Macromolecules 31:8264–8272

    CAS  Google Scholar 

  99. Xue YQ, Tervoort TA, Lemstra PJ (1998) Macromolecules 31:3075–3080

    CAS  Google Scholar 

  100. Cho K, Seo KH, Ahn TO, Kim J, Kim KU (1997) Polymer 38:4825–4830

    CAS  Google Scholar 

  101. Cho K, Li F (1998) Macromolecules 31:7495–7505

    CAS  Google Scholar 

  102. Kalb F, Léger L, Creton C, Plummer CJG, Marcus P, Magalhaes A (2000) Macromolecules 34:2702–2709

    Google Scholar 

  103. Kalb F (1998) Thèse de doctorat, Université Paris VI, France

    Google Scholar 

  104. Wool RP (1995) Polymer interfaces. Hanser Verlag, Munich

    Google Scholar 

  105. Dai KH, Kramer EJ (1994) Polymer 35:157–161

    CAS  Google Scholar 

  106. Dai KH, Norton, LJ, Kramer, EJ (1994) Macromolecules 27:1949–1956

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Creton, C., Kramer, E.J., Brown, H.R., Hui, CY. (2001). Adhesion and Fracture of Interfaces Between Immiscible Polymers: from the Molecular to the Continuum Scal. In: Molecular Simulation Fracture Gel Theory. Advances in Polymer Science, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45141-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-45141-2_2

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42126-9

  • Online ISBN: 978-3-540-45141-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics