Skip to main content

A Unified Framework for Indexing and Matching Hierarchical Shape Structures

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2059))

Abstract

Hierarchical image structures are abundant in computer vision, and have been used to encode part structure, scale spaces, and a variety of multiresolution features. In this paper, we describe a unified framework for both indexing and matching such structures. First, we describe an indexing mechanism that maps the topological structure of a directed acyclic graph (DAG) into a low-dimensional vector space. Based on a novel eigenvalue characterization of a DAG, this topological signature allows us to efficiently retrieve a small set of candidates from a database of models. To accommodate occlusion and local deformation, local evidence is accumulated in each of the DAG’s topological subspaces. Given a small set of candidate models, we will next describe a matching algorithm that exploits this same topological signature to compute, in the presence of noise and occlusion, the largest isomorphic subgraph between the image structure and the candidate model structure which, in turn, yields a measure of similarity which can be used to rank the candidates. We demonstrate the approach with a series of indexing and matching experiments in the domains of 2-D and (view-based) 3-D generic object recognition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim., 5(1):13–51, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  2. K.L. Boyer and A.C. Kak. Structural stereopsis for 3-D vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(2):144–166, March 1988.

    Article  Google Scholar 

  3. E. Chang, Stephane Mallat, and Chee Yap. Wavelet foveation. Journal of Applied and Computational Harmonic Analysis, 9(3):312–335, October 2000.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer vision using probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:749–764, August 1995.

    Article  Google Scholar 

  5. A.D. Cross and E.R. Hancock. Graph matching with a dual-step em algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1236–1253, November 1998. Fig.5 Results of matching the first two, and first and third images, respectively, in Figure 4. The first two images are taken from similar viewpoints (approx 15° apart), and hence many correspondences were found. However, for the first and third images, taken from different viewpoints (approx 75#x00B0 apart), fewer corresponding features were found.

    Article  Google Scholar 

  6. S. Dickinson, A. Pentland, and A. Rosenfeld. From volumes to views: An approach to 3-D object recognition. CVGIP: Image Understanding, 55(2):130–154, 1992.

    Article  MATH  Google Scholar 

  7. M. A. Eshera and K. S. Fu. A graph distance measure for image analysis. IEEE Trans. SMC, 14:398–408, May 1984.

    MATH  Google Scholar 

  8. P. Flynn and A. Jain. 3D object recognition using invariant feature indexing of interpretation tables. CVGIP:Image Understanding, 55(2):119–129, March 1992.

    Article  MATH  Google Scholar 

  9. H. Gabow, M. Goemans, and D. Williamson. An eficient approximate algorithm for survivable network design problems. Proc. of the Third MPS Conference on Integer Programming and Combinatorial Optimization, pages 57–74, 1993.

    Google Scholar 

  10. Steven Gold and Anand Rangarajan. A graduated assignment algorithm for graph matching. IEEE PAMI, 18(4):377–388, 1996.

    Google Scholar 

  11. W. Kim and A. C. Kak. 3d object recognition using bipartite matching embedded in discrete relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):224–251, 1991.

    Article  Google Scholar 

  12. B. B. Kimia, A. Tannenbaum, and S. W. Zucker. Shape, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision, 15:189–224, 1995.

    Article  Google Scholar 

  13. Y. Lamdan, J. Schwartz, and H. Wolfson. Affine invariant model-based object recognition. IEEE Transactions on Robotics and Automation, 6(5):578–589, October 1990.

    Article  Google Scholar 

  14. Tony Lindeberg. Detecting Salient Blob—Like Image Structures and Their Scales With a Scale-Space Primal SketchA Method for Focus—of-Attention. International Journal of Computer Vision, 11(3):283–318, December 1993.

    Article  Google Scholar 

  15. L. Lovász and J. Pelicán. On the eigenvalues of a tree. Periodica Math. Hung., 3:1082–1096, 1970.

    Google Scholar 

  16. B. T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph isomorphism detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:493–504, May 1998.

    Article  Google Scholar 

  17. H. Murase and S. Nayar. Visual learning and recognition of 3-D objects from appearance. International Journal of Computer Vision, 14:5–24, 1995.

    Article  Google Scholar 

  18. A. Neumaier. Second largest eigenvalue of a tree. Linear Algebra and its Applications, 46:9–25, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. L. Overton and R. S. Womersley. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Math. Programming, 62(2):321–357, 1993.

    Article  MathSciNet  Google Scholar 

  20. M. Pelillo, K. Siddiqi, and S. Zucker. Matching hierarchical structures using association graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11):1105–1120, November 1999.

    Article  Google Scholar 

  21. F. Preparata and M. Shamos. Computational Geometry. Springer-Verlag, New York, NY, 1985.

    Google Scholar 

  22. Recognition and shape synthesis of 3D objects based on attributed hypergraphs. A. Wong and S. Lu and M. Rioux. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:279–290, 1989.

    Article  Google Scholar 

  23. S. W. Reyner. An analysis of a good algorithm for the subtree problem. SIAM J. Comput., 6:730–732, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Sanfeliu and K. S. Fu. A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, 13:353–362, May 1983.

    MATH  Google Scholar 

  25. S. Sarkar. Learning to form large groups of salient image features. In IEEE CVPR, Santa Barbara, CA, June 1998.

    Google Scholar 

  26. S. Sclaro and A. Pentland. Modal matching for correspondence and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(6):545–561, June 1995.

    Article  Google Scholar 

  27. K. Sengupta and K. Boyer. Using spectral features for modelbase partitioning. In Proceedings, International Conference on Pattern Recognition, Vienna, Austria, August 1996.

    Google Scholar 

  28. L. Shapiro and M. Brady. Feature-based correspondence: an eigenvector approach. Image and Vision Computing, 10(5):283–288, June 1992.

    Article  Google Scholar 

  29. L. G. Shapiro and R. M. Haralick. Structural descriptions and inexact matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3:504–519, 1981.

    Google Scholar 

  30. L. G. Shapiro and R. M. Haralick. A metric for comparing relational descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:90–94, January 1985.

    Google Scholar 

  31. J. Shi and J. Malik. Normalized cuts and image segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, June 1997.

    Google Scholar 

  32. A. Shokoufandeh and S. Dickinson. Applications of bipartite matching to problems in object recognition. In Proceedings, ICCV Workshop on Graph Algorithms and Computer Vision (web proceedings:http://www.cs.cornell.edu/iccv-graph-workshop/papers.htm), September 1999.

  33. A. Shokoufandeh, S. Dickinson, K. Siddiqi, and S. Zucker. Indexing using a spectral encoding of topological structure. In IEEE Conference on Computer Vision and Pattern Recognition, pages 491–497, Fort Collins, CO, June 1999.

    Google Scholar 

  34. A. Shokoufandeh, I. Marsic, and S. Dickinson. View-based object recognition using saliency maps. Image and Vision Computing, 17:445–460, 1999.

    Article  Google Scholar 

  35. K. Siddiqi, A. Shokoufandeh, S. Dickinson, and S. Zucker. Shock graphs and shape matching. International Journal of Computer Vision, 30:1–24, 1999.

    Google Scholar 

  36. H. Sossa and R. Horaud. Model indexing: The graph-hashing approach. In Proceedings, IEEE CVPR, pages 811–814, 1992.

    Google Scholar 

  37. G.W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, San Diego, 1990.

    MATH  Google Scholar 

  38. M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–86, 1991.

    Article  Google Scholar 

  39. J. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, England, 1965.

    MATH  Google Scholar 

  40. A. Witkin. Scale space filtering. In Alex Pentland, editor, From Pixels to Predicates. Ablex, Norwood, NJ, 1986.

    Google Scholar 

  41. A. K. C. Wong and M. You. Entropy and distance of random graphs with application to structural pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7:599–609, September 1985.

    MATH  Google Scholar 

  42. S. Zhu and A. L. Yuille. Forms: a flexible object recognition and modelling system. International Journal of Computer Vision, 20(3):187–212, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shokoufandeh, A., Dickinson, S. (2001). A Unified Framework for Indexing and Matching Hierarchical Shape Structures. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds) Visual Form 2001. IWVF 2001. Lecture Notes in Computer Science, vol 2059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45129-3_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45129-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42120-7

  • Online ISBN: 978-3-540-45129-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics