Skip to main content

Computational Surface Flattening: A Voxel-Based Approach

  • Conference paper
  • First Online:
Visual Form 2001 (IWVF 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2059))

Included in the following conference series:

Abstract

A voxel-based method for flattening a surface while best preserving the distances is presented. Triangulation or polyhedral approximation of the voxel data are not required. The problem is divided into two main subproblems: Voxel-based calculation of the minimal geodesic distances between the points on the surface, and finding a configuration of points in 2-D that has Euclidean distances as close as possible to the minimal geodesic distances. The method suggested combines an efficient voxel-based hybrid distance estimation method, that takes the continuity of the underlying surface into account, with classical multi-dimensional scaling (MDS) for finding the 2-D point configuration. The proposed algorithm is efficient, simple, and can be applied to surfaces that are not functions. Experimental results are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Angenent, S. Haker, A. Tanenbuam and R. Kikinis, “Conformal Geometry and Brain Flattening“, Proc. 2nd Intern. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI’99), Cambridge, England, pp. 269–278, 1999.

    Google Scholar 

  2. C. Bennis, J.M. Vezien and G. Iglesias, “Piecewise Surface Flattening for Non-Distorted Texture Mapping“, Computer Graphics, Vol. 25, pp. 237–247, 1991.

    Article  Google Scholar 

  3. I. Borg and P. Groenen, Modern Multidimensional Scaling: Theory and Applications, Springer, 1997.

    Google Scholar 

  4. M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.

    Google Scholar 

  5. F. Critchley, “On Certain Linear Mappings Between Inner-Product and Squared-Distance Matrices”, Linear Algebra and its Applications, Vol. 105, pp. 91–107, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  6. A.M. Dale, B. Fischl and M.I. Sereno, “Cortical Surface-Based Analysis: 1. Segmentation and Surface Reconstruction”, NeuroImage, Vol. 9, pp. 179–194, 1999.

    Article  Google Scholar 

  7. A.M. Dale, B. Fischl and M.I. Sereno, “Cortical Surface-Based Analysis: 2. Cortical Surface Based Analysis”, NeuroImage, Vol. 9, pp. 195–207, 1999.

    Article  Google Scholar 

  8. xH.A. Drury, D.C. Van Essen, C.A. Anderson, C.W. Lee, T.A. Coogan and J.W. Lewis, “Computerized Mappings of the Cerebral Cortex: A Multiresolution Flattening Method and a Surface-Based Coordinate System”, J. of Cognitive Neuroscience, Vol. 8, pp. 1–28, 1996.

    Article  Google Scholar 

  9. N. Dyn, “Interpolation of Scattered Data by Radial Functions”, in Topics in Multivariate Approximations (C.K. Chui, L. L. Schumaker, and F.I. Utreras, eds.), pp. 47–62, Academic Press, 1987.

    Google Scholar 

  10. N. Dyn, “Interpolation and Approximation by Radial and Related Functions”, Mul-Approximation Theory VI, Vol. 1, pp. 211–234, 1989.

    MathSciNet  Google Scholar 

  11. J. Gomes and O. Faugeras, “Segmentation of the Inner and Outer Surfaces of the Cortex in Man and Monkey: an Approach Based on Partial Differential Equations”, Proc. Human Brain Mapping Conf., Dusseldorf, Germany, June, 1999.

    Google Scholar 

  12. G.H. Golub and C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, 1989.

    MATH  Google Scholar 

  13. S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis, G. Sapiro and M. Halle, “Conformal Surface Parameterization for Texture Mapping“, IEEE Trans. on Visualization and Computer Graphics, Vol. 6, No. 2, 2000.

    Google Scholar 

  14. R. Kimmel and J.A. Sethian, “Computing Geodesic Paths on Manifolds”, Proceedings of the National Academy of Sciences, Vol. 95, pp. 8431–8435, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. Kimmel and J.A. Sethian, “Fast Voronoi Diagrams and Offsets on Triangulated Surfaces“, in Curve and Surface Design: Saint-Malo 1999, Vanderbilt University Press, 1999.

    Google Scholar 

  16. N. Kiryati and O. Kübler, “Chain Code Probailities and Optimal Length Estimators for Digitized Three-Dimensional Curves”, Pattern Recognition, Vol. 28, pp. 361–372, 1995.

    Article  Google Scholar 

  17. N. Kiryati and G. Székely, “Estimating Shortest Paths and Minimal Distances on Digitized Three-Dimensional Surfaces”, Pattern Recognition, Vol. 26, pp. 1623–1637, 1993.

    Article  Google Scholar 

  18. W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algortihm”, SIGGRAPH’87, ACM Computer Graphics, Vol. 21, pp. 163–169, 1987.

    Article  Google Scholar 

  19. S.D. Ma and H. Lin, “Optimal Texture Mapping”, Euro graphics, pp. 421–428, 1988.

    Google Scholar 

  20. J.S.B. Mitchell, D.M. Mount and C.H. Papadimitriou, “The Discrete Geodesic Problem”, SIAM J. Comput., Vol. 16, pp. 647–668, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  21. E.L. Schwartz, A. Shaw and E. Wolfson, “A Numerical Solution to the Generalized Mapmaker’s Problem: Flattening No convex Polyhedral Surfaces”, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 11, pp. 1005–1008, 1989.

    Article  Google Scholar 

  22. E. Wolfson and E.L. Schwartz, “Computing Minimal Distances on Polyhedral Surfaces”, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 11, pp. 1001–1005, 1989.

    Article  Google Scholar 

  23. G. Zigelman, R. Kimmel and N. Kiryati, “Texture Mapping using Surface Flattening via Multi-Dimensional Scaling”, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grossmann, R., Kiryati, N., Kimmel, R. (2001). Computational Surface Flattening: A Voxel-Based Approach. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds) Visual Form 2001. IWVF 2001. Lecture Notes in Computer Science, vol 2059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45129-3_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-45129-3_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42120-7

  • Online ISBN: 978-3-540-45129-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics