Advertisement

Parametric Multiple Sequence Alignment and Phylogeny Construction

  • David Fernández-Baca
  • Timo Seppäläinen
  • Giora Slutzki
Conference paper
  • 401 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1848)

Abstract

Bounds are given on the size of the parameter-space decomposition induced by multiple sequence alignment problems where phylogenetic information may be given or inferred. It is shown that many of the usual formulations of these problems fall within the same integer parametric framework, implying that the number of distinct optima obtained as the parameters are varied across their ranges is polynomially bounded in the length and number of sequences.

Keywords

Multiple Sequence Alignment Multiple Alignment Internal Node Pairwise Alignment Optimality Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pankaj K. Agarwal and Micha Sharir. Davenport-Schinzel Sequences and their Geometric Applications. Cambridge University Press, Cambridge-New York-Melbourne, 1995.zbMATHGoogle Scholar
  2. 2.
    Stephen F. Altschul. Gap costs for multiple sequence alignment. J. Theor. Biol., 138:297–309, 1989.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Stephen F. Altschul. Leaf pairs and tree dissections. SIAM J. Disc. Math., 2(3):293–299, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Stephen F Altschul, Raymond J. Carrol, and David J. Lipman. Weights for data related by a tree. J. Mol. Biol., 207:647–653, 1989.CrossRefGoogle Scholar
  5. 5.
    Stephen F. Altschul and David J. Lipman. Trees, stars, and multiple biological sequence alignment. SIAM J. Appl. Math., 49(1):197–209, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary change in proteins. Atlas of Protein Sequence and Structure, 5:345–352, 1978.Google Scholar
  7. 7.
    David Dobkin, Herbert Edelsbrunner, and C. K. Yap. Probing convex polytopes. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing, pages 424–432, 1986.Google Scholar
  8. 8.
    David Dobkin, Herbert Edelsbrunner, and C. K. Yap. Probing convex polytopes. InCox and Wilfong, (editors), Autonomous Robot Vehicles, pages 328–341. Springer-Verlag, 1990.Google Scholar
  9. 9.
    Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, 1987.zbMATHGoogle Scholar
  10. 10.
    M.J. Eisner and D.G. Severance. Mathematical techniques for efficient record segmentation in large shared databases. J. Assoc. Comput. Mach., 23:619–635, 1976.zbMATHMathSciNetGoogle Scholar
  11. 11.
  12. 12.
    D. Feng and R.F. Doolittle. Progressive alignment as a prerequisite to correct phylogenetic trees. J. Mol. Evol., 25:351–360, 1987.CrossRefGoogle Scholar
  13. 13.
    David Fernández-Baca, Timo Seppäläinen, and Giora Slutzki. Bounds for parametric sequence comparison. In Proc. Symp. on String Processing and Information Retrieval, pages 55–62. IEEE Computer Society, 1999.Google Scholar
  14. 14.
    David Fernández-Baca and S. Srinivasan. Constructing the minimization diagram of a two-parameter problem. Operations Research Letters, 10:87–93, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    S. K. Gupta, J. Kececioglu, and A. A. Schäffer. Improving the practical space and time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment. Journal of Computational Biology, 2:459–472, 1995.Google Scholar
  16. 16.
    Dan Gusfield. Sensitivity analysis for combinatorial optimization. Technical Report UCB/ERL M80/22, University of California, Berkeley, May 1980.Google Scholar
  17. 17.
    Dan Gusfield. Parametric combinatorial computing and a problem in program module allocation. J. Assoc. Comput. Mach., 30(3):551–563, 1983.zbMATHMathSciNetGoogle Scholar
  18. 18.
    Dan Gusfield. Efficient algorithms for multiple sequence alignment with guaranteed error bounds. Bull. Math. Biol., 55:141–154, 1993.zbMATHGoogle Scholar
  19. 19.
    Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge-New York-Melbourne, 1997.zbMATHGoogle Scholar
  20. 20.
    Dan Gusfield, K. Balasubramanian, and Dalit Naor. Parametric optimization of sequence alignment. Algorithmica, 12:312–326, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Dan Gusfield and Robert W. Irving. Parametric stable marriage and minimum cuts. Information Processing Letters, 30:255–259, 1989.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Dan Gusfield and Paul Stelling. Parametric and inverse-parametric sequence alignment with XPARAL. In Russell F. Doolittle, (editor), Computer methods for macromolecular sequence analysis, volume 266 of Methods in Enzymology, pages 481–494. Academic Press, 1996.Google Scholar
  23. 23.
    S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA, 89:10915–10919, 1992.CrossRefGoogle Scholar
  24. 24.
    Xiaoqiu Huang, Pavel A. Pevzner, and Webb Miller. Parametric recomputing in alignment graphs. In M. Crochemore and D. Gusfield, (editors), Combinatorial Pattern Matching, volume 807 of Lecture Notes in Computer Science, pages 87–101. Springer-Verlag, 1994.Google Scholar
  25. 25.
    T. Jiang and L. Wang. On the complexity of multiple sequence alignment. Journal of Computational Biology, 1:337–348, 1994.CrossRefGoogle Scholar
  26. 26.
    Tao Jiang, Eugene L. Lawler, and Lusheng Wang. Aligning sequences via an evolutionary tree: Complexity and approximation (extended abstract). In Proc. 26th Ann. Symp. Theory of Computing, pages 760–769, 1994.Google Scholar
  27. 27.
    D. J. Lipman, S. F. Altschul, and J. D. Kececioglu. A tool for multiple sequence alignment. Proc. Natl. Acad. Sci. USA, 86:4412–4415, 1989.CrossRefGoogle Scholar
  28. 28.
    Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An Introduction. Springer-Verlag, 1985.Google Scholar
  29. 29.
    D. Sankoff and R. J. Cedergren. Simultaneous comparison of three or more sequences related by a tree. In Joseph B. Kruskal, (ntitors). Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison Addison-Wesley, Reading, MA, 1983 Sankoff and Kruskal[31], pages 253–263.Google Scholar
  30. 30.
    David Sankoff. Minimal mutation trees of sequences. SIAM J. Appl. Math., 28(1):35–42, January 1975.Google Scholar
  31. 31.
    David Sankoff and Joseph B. Kruskal, (editors). Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison Addison-Wesley, Reading, MA, 1983.Google Scholar
  32. 32.
    Tetsuo Shibuya and Hiroshi Imai. New flexible approaches for multiple sequence alignment. Journal of Computational Biology, 4(3):385–413, 1997.Google Scholar
  33. 33.
    Martin Vingron. Sequence alignment and phylogeny construction. In M. Farach-Colton et al., (editor), Mathematical Support for Molecular Biology, volume 47 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, 1998.Google Scholar
  34. 34.
    Martin Vingron and Michael S. Waterman. Sequence alignment and penalty choice: Review of concepts, case studies, and implications. J. Mol. Biol., 235:1–12, 1994.CrossRefGoogle Scholar
  35. 35.
    Michael S. Waterman, M. Eggert, and Eric Lander. Parametric sequence comparisons. Proc. Natl. Acad. Sci. USA, 89:6090–6093, 1992.CrossRefGoogle Scholar
  36. 36.
    Ward C. Wheeler. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst. Bio., 44(3):321–331, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • David Fernández-Baca
    • 1
  • Timo Seppäläinen
    • 2
  • Giora Slutzki
    • 1
  1. 1.Department of Computer ScienceIowa State UniversityAmes
  2. 2.Department of MathematicsIowa State UniversityAmes

Personalised recommendations