Advertisement

Periods and Quasiperiods Characterization

  • Mireille Régnier
  • Laurent Mouchard
Conference paper
  • 401 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1848)

Abstract

We provide a new characterization of periods and quasiperi ods that is constructive. It allows for a canonical partition of the set of borders of a given word w. Each subset of the partition contains a superprimitive border q and possibly quasiperiodic borders that admit qas a cover. Notably, we characterize superprimitive borders. A few enumeration results are given.

Keywords

Primitivity Condition Enumeration Result Index Sequence Information Processing Letter Discrete Apply Mathematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AE93.
    A. Apostolico and A. Ehrenfeucht. Efficient detection of quasiperiodicities in strings. Theoretical Computer Science, 119(2):247–265, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  2. AFI91.
    A. Apostolico, M. Farach and C. S. Iliopoulos. Optimal superprimitivity testing for strings. Information Processing Letters, 39(1):17–20, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  3. Bre92.
    D. Breslauer. An on-line string superprimitivity test. Information Processing Letters, 44(6):345–347, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  4. GO81.
    L. Guibas and A.M. Odlyzko. String Overlaps, Pattern Matching and Nontransitive Games. Journal of Combinatorial Theory, Series A, 30:183–208, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  5. IM99a.
    C.S. Iliopoulos and L. Mouchard. Quasiperiodicity: from detection to normal forms. Journal of Automata, Languages and Combinatorics, 4(3):213–228, 1999.zbMATHMathSciNetGoogle Scholar
  6. IM99b.
    C. S. Iliopoulos and L. Mouchard. An o(n logn) algorithm for computing all maximal quasiperiodicities in strings. In C. S. Calude and M. J. Dinneen, editors, Combinatorics, Computation and Logic. Proceedings of DMTCS’99 and CATS’99, Lecture Notes in Computer Science, pages 262–272, Auckland, New-Zealand, 1999.Google Scholar
  7. IM99c.
    C.S. Iliopoulos and L. Mouchard. Quasiperiodicity and string covering. Theoretical Computer Science, 218(1):205–216, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  8. Lot83.
    Lothaire. Combinatorics on Words. Addison-Wesley, Reading, Mass., 1983.zbMATHGoogle Scholar
  9. MR00.
    F. Mignosi and A. Restivo. Periodicity (Chapter 9). Algebraic Combinatorics on Words. to appear; preliminary version at http://www-igm.univ-mlv.fr/~berstel/Lothaire/2000.
  10. Rég92.
    M. Régnier. Enumeration of bordered words. RAIRO Theoretical Informatics and Applications, 26,4:303–317, 1992.Google Scholar
  11. Rég99.
    M. Régnier. A Unified Approach to Word Occurrences Probabilities. Discrete Applied Mathematics, 1999. to appear; preliminary version at RECOMB’98.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Mireille Régnier
    • 1
  • Laurent Mouchard
    • 2
    • 3
  1. 1.Domaine de VoluceauINRI A RocquencourtLe Chesnay CedexFrance
  2. 2.ESA 6037 - ABISS, Université de RouenMont-Saint-Aignan CedexFrance
  3. 3.Dept. of SciKing’s College LondonLondonUK

Personalised recommendations