Linear Bidirectional On-Line Construction of Affix Trees

  • Moritz G. Maaß
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1848)


Affix trees are a generalization of suffix trees that is based on the inherent duality of suffix trees induced by the suffix links. An algorithm is presented that constructs affix trees on-line by expanding the underlying string in both directions and that has linear time complexity.


Suffix Tree Open Edge IEEE 14th Annual Symposium Linear Time Complexity Traversal Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BBH+87._A. Blumer, J. Blumer, D. Haussler, R. McConnell, and A. Ehrenfeucht. Complete inverted files for efficient text retrieval and analysis. J. ACM, 34(3):578–595, July 1987.Google Scholar
  2. CLR90.
    Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT Press, 1st edition, 1990.Google Scholar
  3. GK97.
    R. Giegerich and S. Kurtz. From Ukkonen to McCreight and Weiner: A Unifying View of Linear-Time Suffix Tree Construction. Algorithmica, 19:331–353, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  4. Gus97.
    Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, 1997.Google Scholar
  5. McC76.
    Edward M. McCreight. A Space-Economical Suffix Tree Construction Algorithm. J. ACM, 23(2):262–272, April 1976.Google Scholar
  6. Sto95.
    J. Stoye. Affixbäume. Master’s thesis, Universität Bielefeld, May 1995.Google Scholar
  7. Sto00.
    J. Stoye. Affix Trees. Technical Report 2000-04, Universität Bielefeld, Technische Fakultät, 2000,
  8. Ukk95.
    E. Ukkonen. On-Line Construction of Suffix Trees. Algorithmica, 14:249–260, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  9. Wei73.
    P. Weiner. Linear pattern matching. In IEEE 14th Annual Symposium on Switching and Automata Theory, pages 1–11. IEEE, 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Moritz G. Maaß
    • 1
  1. 1.Fakultät für InformatikTU MünchenGermany

Personalised recommendations