Advertisement

A Lower Bound for the Breakpoint Phylogeny Problem

  • David Bryant
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1848)

Abstract

Breakpoint phylogenies methods have been shown to be an effective way to extract phylogenetic information from gene order data. Currently, the only practical breakpoint phylogeny algorithms for the analysis of large genomes with varied gene content are heuristics with no optimality guarantee. Here we address this shortcoming by describing new bounds for the breakpoint median problem, and for the more complicated breakpoint phylogeny problem. In both cases we employ Lagrangian multipliers and subgradient optimization to tighten the bounds. The experimental results are promising: we achieve lower bounds close to the upper bounds established using breakpoint phylogeny heuristics.

Keywords

Travel Salesman Problem Travel Salesman Problem Steiner Point Breakpoint Distance Subgradient Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchette, M., Kunisawa, T. and Sankoff, D. 1999. Gene order breakpoint evidence in animal mitochondrial phylogeny. Journal of Molecular Evolution 49, 193–203.CrossRefGoogle Scholar
  2. 2.
    Bryant, D., Deneault, M. and Sankoff, D. 1999. The breakpoint median problem. Centre de recherches mathématiques, Université de Montréal. ms.Google Scholar
  3. 3.
    Caprara, A. 1999. Formulations and hardness of multiple sorting by reversals. In: Istrail, S., Pevzner, P.A. and Waterman, M. (eds) Proceedings of the 3rd Annual International Conference on Computational Molecular Biology (RECOMB 99). ACM, New York, pp 84–93.CrossRefGoogle Scholar
  4. 4.
    Hannenhalli, S., Chappey, C., Koonin, E.V. and Pevzner, P.A. 1995. Genome sequence comparison and scenarios for gene rearrangements: a test case. Genomics 30, 299–311.CrossRefGoogle Scholar
  5. 5.
    Hannenhalli, S. and Pevzner, P.A. 1995. Transforming cabbage into turnip. (polynomial algorithm for sorting signed permutations by reversals). In: Proceedings of the 27th Annual ACM-SIAM Symposium on the Theory of Computing, pp 178–189.Google Scholar
  6. 6.
    Held, M. and Karp, R. 1970. The traveling salesman problem and minimum spanning trees: part II. Math. Programming 1, 16–25.MathSciNetGoogle Scholar
  7. 7.
    Held, M. and Karp, R. 1970. The traveling salesman problem and minimum spanning trees. Operations Res. 18, 1138–1162.zbMATHMathSciNetGoogle Scholar
  8. 8.
    Karp, R.M. Reducibility among combinatorial problems. In: Miller, R.E., and Thatcher, J. (eds) Complexity of Computer Computations, Plenum Press, New York, 85–103.Google Scholar
  9. 9.
    Korab-Laskowska, M., Rioux, P., Brossard, N., Littlejohn, T.G., Gray, M.W., Lang, B.F. and Burger, G. 1998. The Organelle Genome Database Project (GOBASE). Nucleic Acids Research 26, 139–146. http://megasun.bch.umontreal.ca/gobase/gobase.html CrossRefGoogle Scholar
  10. 10.
    Pe’er, I. and Shamir, R. 1998. The median problems for breakpoints are NP-complete. Electronic Colloquium on Computational Complexity Technical Report 98-071, http://www.eccc.uni-trier.de/eccc
  11. 11.
    Reinelt, G. 1991. The traveling salesman-computational solutions for TSP applications. Springer Verlag.Google Scholar
  12. 12.
    Sankoff, D., Rousseau, P. 1975. Locating the vertices of a Steiner tree in an arbitrary metric space. Math. Programming 9(2), 240–246.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sankoff, D. 1992. Edit distance for genome comparison based on non-local operations. In: Apostolico, A., Crochemore, M., Galil, Z. and Manber, U. (eds) Combinatorial Pattern Matching. 3rd Annual Symposium. Lecture Notes in Computer Science 644. Springer Verlag, New York, pp 121–135.Google Scholar
  14. 14.
    Sankoff, D., Sundaram, G. and Kececioglu, J. 1996. Steiner points in the space of genome rearrangements. International Journal of the Foundations of Computer Science 7, 1–9.zbMATHCrossRefGoogle Scholar
  15. 15.
    Sankoff, D., Blanchette, M. 1998. Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology 5, 555–570.CrossRefGoogle Scholar
  16. 16.
    Sankoff, D., Bryant, D., Denault, M., Lang, B.F., Burger, G. 2000. Early eukaryote evolution based on mitochondrial gene order breakpoints. In: Istrail, S., Pevzner, P.A. and Waterman, M. (eds) Proceedings of the 5th Annual International Conference on Computational Molecular Biology (RECOMB 00). ACM, New York (to appear).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • David Bryant
    • 1
  1. 1.CRM Université de MontréalMontréal

Personalised recommendations