Skip to main content

Approximating the Maximum Isomorphic Agreement Subtree Is Hard

  • Conference paper
  • First Online:
Book cover Combinatorial Pattern Matching (CPM 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1848))

Included in the following conference series:

Abstract

The Maximum Isomorphic Agreement Subtree (MIT) problem is one of the simplest versions of the Maximum Interval Weight Agreement Subtree method (MIWT) which is used to compare phylogenies. More precisely MIT allows to provide a subset of the species such that the exact distances between species in such subset is preserved among all evolutionary trees considered. In this paper, the approximation complexity of the MIT problem is investigated, showing that it cannot be approximated in polynomial time within factor logδ n for any δ > 0 unless NPDTIME(2polylog n) for instances containing three trees. Moreover, we show that such result can be strengthened whenever instances of the MIT problem can contain an arbitrary number of trees, since MIT shares the same approximation lower bound of MAX CLIQUE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms. SIAM Journal on Computing, 26(6):1656–1669, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Cole, M. Farach, R. Hariharan, T. Przytycka, and M. Thorup. An O(n log n) algorithm for the maximum agreement subtree problem for binary trees. SIAM Journal on Computing, to appear.

    Google Scholar 

  3. R. Cole and R. Hariharan. An O(n log n) algorithm for the maximum agreement subtree problem for binary trees. In Proc. of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA96), pages 323–332, 1996.

    Google Scholar 

  4. M. Farach, T. M. Przytycka, and M. Thorup. On the agreement of many trees. Information Processing Letters, 55(6):297–301, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Farach and M. Thorup. Fast comparison of evolutionary trees. Information and Computation, 123(1):29–37, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Farach and M. Thorup. Sparse dynamic programming for evolutionary-tree comparison. SIAM Journal on Computing, 26(1):210–230, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Finden and A. Gordon. Obtaining common pruned trees. Journal of Classification, 2:255–276, 1985.

    Article  Google Scholar 

  8. J. Håstad. Clique is hard to approximate within n1-∈. Acta Mathematica, to appear.

    Google Scholar 

  9. J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing evolutionary trees. In Z. Galil and E. Ukkonen, editors, Proceedings of the 6th Annual Symposium on Combinatorial Pattern Matching (CPM95), volume 937 of LNCS, pages 177–190. Springer-Verlag, 1995.

    Google Scholar 

  10. V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Information Processing Letters, 37(1):27–35, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  11. V. Kann. On the approximability of the maximum common subgraph problem. In Proc. 9th Ann. Symp. on Theoretical Aspects of Comput. Sci. (STACS92), volume 577 of LNCS, pages 377–388, 1992.

    Google Scholar 

  12. M.-Y. Kao. Tree contractions and evolutionary trees. SIAM Journal on Computing, to appear.

    Google Scholar 

  13. M.-Y. Kao, T. W. Lam, T. M. Przytycka, W.-K. Sung, and H.-F. Ting. General techniques for comparing unrooted evolutionary trees. In Proceedings of the 29th Symposium on the Theory of Computing (STOC97), pages 54–65, 1997.

    Google Scholar 

  14. E. Kubicka, G. Kubicki, and F. McMorris. An algorithm to find agreement subtrees. Journal of Classification, 12(1):91–99, 1995.

    Article  MATH  Google Scholar 

  15. T. Lam, W. Sung, and H. Ting. Computing the unrooted maximum agreement subtree in subquadratic time. In Proc. of the 5th Scandinavian Workshop on ALgorithms Theory, LNCS, pages 124–135, 1996.

    Google Scholar 

  16. E. Smolenskii. Jurnal Vicisl. Mat. i Matem. Fiz., 2(2):371–372, 1962.

    MathSciNet  Google Scholar 

  17. M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum agreement subtree. Information Processing Letters, 48(2):77–82, 1993.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bonizzoni, P., Della Vedova, G., Mauri, G. (2000). Approximating the Maximum Isomorphic Agreement Subtree Is Hard. In: Giancarlo, R., Sankoff, D. (eds) Combinatorial Pattern Matching. CPM 2000. Lecture Notes in Computer Science, vol 1848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45123-4_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-45123-4_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67633-1

  • Online ISBN: 978-3-540-45123-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics