Approximating the Maximum Isomorphic Agreement Subtree Is Hard

  • Paola Bonizzoni
  • Gianluca Della Vedova
  • Giancarlo Mauri
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1848)


The Maximum Isomorphic Agreement Subtree (MIT) problem is one of the simplest versions of the Maximum Interval Weight Agreement Subtree method (MIWT) which is used to compare phylogenies. More precisely MIT allows to provide a subset of the species such that the exact distances between species in such subset is preserved among all evolutionary trees considered. In this paper, the approximation complexity of the MIT problem is investigated, showing that it cannot be approximated in polynomial time within factor logδ n for any δ > 0 unless NPDTIME(2 polylog n ) for instances containing three trees. Moreover, we show that such result can be strengthened whenever instances of the MIT problem can contain an arbitrary number of trees, since MIT shares the same approximation lower bound of MAX CLIQUE.


Feasible Solution Evolutionary Tree Extant Species Unbounded Number Information Processing Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms. SIAM Journal on Computing, 26(6):1656–1669, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Cole, M. Farach, R. Hariharan, T. Przytycka, and M. Thorup. An O(n log n) algorithm for the maximum agreement subtree problem for binary trees. SIAM Journal on Computing, to appear.Google Scholar
  3. 3.
    R. Cole and R. Hariharan. An O(n log n) algorithm for the maximum agreement subtree problem for binary trees. In Proc. of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA96), pages 323–332, 1996.Google Scholar
  4. 4.
    M. Farach, T. M. Przytycka, and M. Thorup. On the agreement of many trees. Information Processing Letters, 55(6):297–301, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Farach and M. Thorup. Fast comparison of evolutionary trees. Information and Computation, 123(1):29–37, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Farach and M. Thorup. Sparse dynamic programming for evolutionary-tree comparison. SIAM Journal on Computing, 26(1):210–230, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C. Finden and A. Gordon. Obtaining common pruned trees. Journal of Classification, 2:255–276, 1985.CrossRefGoogle Scholar
  8. 8.
    J. Håstad. Clique is hard to approximate within n1-∈. Acta Mathematica, to appear.Google Scholar
  9. 9.
    J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing evolutionary trees. In Z. Galil and E. Ukkonen, editors, Proceedings of the 6th Annual Symposium on Combinatorial Pattern Matching (CPM95), volume 937 of LNCS, pages 177–190. Springer-Verlag, 1995.Google Scholar
  10. 10.
    V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Information Processing Letters, 37(1):27–35, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    V. Kann. On the approximability of the maximum common subgraph problem. In Proc. 9th Ann. Symp. on Theoretical Aspects of Comput. Sci. (STACS92), volume 577 of LNCS, pages 377–388, 1992.Google Scholar
  12. 12.
    M.-Y. Kao. Tree contractions and evolutionary trees. SIAM Journal on Computing, to appear.Google Scholar
  13. 13.
    M.-Y. Kao, T. W. Lam, T. M. Przytycka, W.-K. Sung, and H.-F. Ting. General techniques for comparing unrooted evolutionary trees. In Proceedings of the 29th Symposium on the Theory of Computing (STOC97), pages 54–65, 1997.Google Scholar
  14. 14.
    E. Kubicka, G. Kubicki, and F. McMorris. An algorithm to find agreement subtrees. Journal of Classification, 12(1):91–99, 1995.zbMATHCrossRefGoogle Scholar
  15. 15.
    T. Lam, W. Sung, and H. Ting. Computing the unrooted maximum agreement subtree in subquadratic time. In Proc. of the 5th Scandinavian Workshop on ALgorithms Theory, LNCS, pages 124–135, 1996.Google Scholar
  16. 16.
    E. Smolenskii. Jurnal Vicisl. Mat. i Matem. Fiz., 2(2):371–372, 1962.MathSciNetGoogle Scholar
  17. 17.
    M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum agreement subtree. Information Processing Letters, 48(2):77–82, 1993.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Paola Bonizzoni
    • 1
  • Gianluca Della Vedova
    • 1
  • Giancarlo Mauri
    • 1
  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano - BicoccaMilanoItaly

Personalised recommendations